JUSTIPEN report of Alexander Lisetskiy, University of Arizona

My trip to JAPAN supported by the JUSTIPEN grant includes several scientific activities. First, I have attended the International Nuclear Physics Conference in Tokyo (June 3–8) and presented poster "Towards Effective Interaction Renormalization for No-Core Shell Model".

Second, I have attended the International Workshop on Nuclear Structure "New Pictures in the Extended Isospin Space" held in Kyoto (June 11–14), where I had an oral presentation about "Effects of N=20 shell closure erosion on M1 and E2 properties". I had a chance to exchange ideas and results with many Japanese, American and European colleagues at both conferences.

Third, I have spent the rest of the time (June 9–10 and 15–28) supported by the JUSTIPEN grant at the RIKEN. During this period I have presented the results of my recent work "Embeddying many-body correlations into two-body effective interactions for small shell model spaces" and wrote the draft version of the corresponding paper. This research direction deals with a new technique to derive standard shell model effective interaction using results of No Core Shell Model (NCSM). Our NCSM results for A=18 nuclei and derived interaction for the sd-shell has ignited interesting discussion and exchange of ideas with Prof. T. Otsuka and Dr. S. Fujii working on related problem of double unitary transformation technique for effective interactions in A~12 mass region. There is a overlap with our Japanese colleagues and we agreed to start a common project. Our idea is to trace the tensor part of the bare NN interaction when performing Lee-Suzuki unitary transformation for NCSM and secondary unitary transformation for shell model with inert core.

I have also presented the results of the work on "Exotic Nuclear Landscape in a vicinity of 78Ni" focused on the construction of the semi-empirical effective interaction for the exotic region. This project stimulated productive discussions with experimentalists (Dr. K.Yoneda) planning an experiment for 78Ni as well as theoreticians (M. Honma and T. Otsuka) working on related problem. Both, our and Japanese group results, indicate considerable softness of expected doubly-magic 78Ni core that will be checked directly at RIKEN experiment on 78Ni. We found that there is a great potential for the collaboration towards improvement of the effective interactions produced independently by two groups.