MSE 675
Advanced Structural Analysis by Scattering

Synopsis:

The purpose of this course is to introduce graduate students in materials science, physics, chemistry and biochemistry to modern methods of structural characterization using x-rays and neutrons. In the last two decades synchrotron based radiation sources (synchrotron radiation sources and spallation neutron sources) have revolutionized the scattering methods to characterize static and dynamic atomic structure in solids and liquids, including surfaces. Starting from the basics, this course covers theories and practices necessary to carry out and utilize these advanced techniques.

Outline:

1. Introduction
 Bragg’s law, reciprocal space, diffraction vector.
2. Tools of analysis
 2.1 X-ray diffraction
 Generation of x-rays, detection of x-rays, interaction of x-rays with matter
 2.2 Neutron scattering
 Generation of neutrons, detection of neutrons, interaction of neutrons with matter
3. Introduction to diffraction theory
 Wave interference, structure factor
4. Small angle scattering
 Theory and practice
5. Crystallographic analysis
 Powder and single crystal analysis
6. Local structure by pair-density function (PDF) analysis
 Fourier-transform of structure function
7. Inelastic scattering of neutrons and x-rays
 Dynamic structure factor, methods of inelastic scattering experiment
8. Dynamical theory of scattering
 Coherent multiple scattering, Laue and Bormann effect, total scattering
9. Surface scattering
 Truncation rod, thin films
10. X-ray absorption spectroscopy
 XANES and EXAFS
11. Anomalous x-ray scattering
 Combining spectroscopy and scattering