9.1. Consider a volume V bounded by a surface S filled with a magnetization $\mathbf{M}(\mathbf{r}')$ that depends on the position \mathbf{r}'. The vector potential \mathbf{A} produced by a magnetization $\mathbf{M}(\mathbf{r})$ is given by

$$\mathbf{A}(\mathbf{r}) = \int d^3\mathbf{r}' \frac{\mathbf{M}(\mathbf{r}') \times (\mathbf{r} - \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^3}.$$

(a) Show that $\nabla' \left(\frac{1}{|\mathbf{r} - \mathbf{r}'|} \right) = \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3 \mathbf{r}}$.

(b) Use this result together with the divergence theorem to show that $\mathbf{A}(\mathbf{r})$ can be written as

$$\mathbf{A}(\mathbf{r}) = \int_V d^3\mathbf{r}' \frac{\nabla' \times \mathbf{M}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} + \oint_S dS' \frac{\mathbf{M}(\mathbf{r}') \times \mathbf{n}'}{|\mathbf{r} - \mathbf{r}'|},$$

where \mathbf{n} is a unit vector outward normal to the surface S. The volume integration is carried out over the volume V of the magnetized material. The surface integral is carried out over the surface bounding the magnetized object.

9.2. Demonstrate for yourself that Table 9.1 is correct by placing \uparrow or \downarrow arrows according to Hund’s rules as shown below for Cr of atomic configuration $(3d)^5 (4s)^1$.

<table>
<thead>
<tr>
<th>l_z</th>
<th>2</th>
<th>1</th>
<th>0</th>
<th>-1</th>
<th>-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3d-shell</td>
<td>$\uparrow\uparrow\uparrow\uparrow\uparrow$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4s-shell</td>
<td></td>
<td>\uparrow</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clearly $S = \frac{1}{2} \times 6 = 3$, $L = 0$, $J = L + S = 3$, and

$$g = \frac{3}{2} + \frac{1}{2} \frac{3(3 + 1) - 0(0 + 1)}{3(3 + 1)} = 2.$$

Therefore, the spectroscopic notation of Cr is 7S_3.

Use Hund’s rules (even though they might not be appropriate for every case) to make a similar table for Y^{39}, Nb^{41}, Tc^{43}, La^{57}, Dy^{66}, W^{74}, and Am^{95}.