NUCLEAR PHYSICS 622, Spring 2005

Dr. Witek Nazarewicz
Telephone: 574-4580 Fax: 574-8746
e-mail: witek@utk.edu

Syllabus

1. The Fock Space for Fermions
2. Second quantization representation
3. Occupation number representation
4. Wick's theorem, contractions
5. Wick's Theorem for the Evaluation of Matrix Elements
6. Product states
7. Quasiparticle space
8. Matrix Bogoliubov transformation
9. Bogoliubov transformations in the Fock space
10. Improper Bogoliubov transformations
11. Ring and Schuck theorem
12. Thouless theorem
13. Density matrices and the generalized density matrix
14. Lipkin model, group structure, exact solutions, quantum numbers
15. Hartree-Fock method
16. Lipkin model and Hartree-Fock method. Coherent SU(2) states
16. Hartree-Fock stability conditions
17. Self-consistent Hartree-Fock symmetries
18. Spontaneous symmetry breaking
19. Parity doublet in the Lipkin model
20. Hartree-Fock-Bogoliubov
21. Gauge space and particle number symmetry
22. Random phase approximation
23. Generator Coordinate Method (GCM)
24. GCM in the Lipkin model
25. Nuclear adiabatic motions: problems and perspectives

We shall be meeting Mondays and Wednesdays 9:30-10:45, PHY 512

Recommended textbook: "The Nuclear Many Body Problem"