Mini-Finale for 232 lab

Name:__

Notice the Due Date for this Final.

Due Date: April 24th, 2007: No Exceptions by 10:00 p.m.

I. Easy Questions:

1. A certain sensor is exposed for 0.8 seconds to a 340 watt lamp that is
 about 15.2 meters away. The sensor itself has an opening that is
 22.5mm in diameter. How many photons will enter the sensor? You
 can assume that the wavelength of the emitted light is of order 442 nm.

2. Assume that light of wavelength around 480 nm strikes the surface of
 some metal that causes some of the electrons to have a stopping
 potential of 0.89 volts. What is the work function of the metal
 surface? What is the threshold frequency? What stopping potential is
 needed if the wavelength is decreased to 150nm?

3. Assume that you have a sample of radioactive material that is initially
 found to have an activity of 235 decays per minute. After 1 week the
 activity is measured to be around 42.5 decays per minute. What is the
 half-life of the material? How long will it take to reach a decay of 0.5
 decays per minute or close to a background radiation count?

II. More Challenging Questions

Problem 4:

(a) What is the wavelength of a 13 eV electron and what is the energy of a
 photon with this same wavelength?
(b) Light with a wavelength of 310 nm strikes a metal whose work function is
 2.2 eV. What is the shortest de Broglie wavelength for the electrons that are
 produced as photoelectrons?
(c) A surface is irradiated with monochromatic light whose wavelength can be
 varied. Above a wavelength of 500 nm, no photoelectrons are emitted from
 the surface. With an unknown wavelength, a stopping potential of 3V is
 necessary to eliminate the photoelectric current. What is the unknown
 wavelength?

Problem 5:

(a) Compare the intensity of a light bulb at a distance of 4 m from it to the
 intensity at 1 m from it. Repeat this comparison for laser light. Explain fully
 but briefly.
(b) Compute the electric field corresponding to a focused light intensity of \(I = 10^{12} \text{W/cm}^2 \), and compare the result with the electric field experienced by the
 electron in a Hydrogen atom.