One note about the test, do not worry about numbers too much, if you have concept method and formula correct, wrong numerical answer will at most cost you 1 point out of $\mathbf{1 0}$.

Chapter 5 Homework

Prob 1

The number of moles per cm^{3} is $81 \times 10^{-3} / 3=27 \times 10^{-3}$, so that the concentration is $16 \times$ 10^{21} atoms cm ${ }^{-3}$. The mass of an atom of He^{3} is (3.017) (1.661) $\times 10^{-24}=5.01 \times 10^{-24} \mathrm{~g}$. Thus $\varepsilon_{\mathrm{F}} \simeq\left[\left(1.1 \times 10^{-54}\right) / 10^{-23}\right]\left[(30)(16) \times 10^{21}\right]^{2 / 3} \approx 7 \times 10^{-16} \mathrm{erg}$, or $\mathrm{T}_{\mathrm{F}} \approx 5 \mathrm{~K}$.

Prob 2

The energy eigenvalues are $\varepsilon_{\mathrm{k}}=\frac{\mathfrak{K}^{2}}{2 \mathrm{~m}} \mathrm{k}^{2}$. The mean value over the volume of a sphere in k space is

$$
<\varepsilon>=\frac{\mathrm{h}^{2}}{2 \mathrm{~m}} \frac{\int \mathrm{k}^{2} \mathrm{dk} \cdot \mathrm{k}^{2}}{\int \mathrm{k}^{2} \mathrm{dk}}=\frac{3}{5} \cdot \frac{\mathrm{~h}^{2}}{2 \mathrm{~m}} \mathrm{k}_{\mathrm{F}}^{2}=\frac{3}{5} \varepsilon_{\mathrm{F}} .
$$

The total energy of N electrons is

$$
\mathrm{U}_{0}=\mathrm{N} \cdot \frac{3}{5} \varepsilon_{\mathrm{F}} .
$$

Prob 3

(a) $n=N / V=(m / M) / V=\rho_{m} /\left(63.546 * 10^{-3} / 6.02 * 10^{-23}\right)=8.464 \times 10^{28}$ Assuming 1

Copper atom contributes 1 electron. This problem is mostly plugging in numbers once you have the correct equation. Also the mass in the equations refer to effective mass of eletrons.
(b) $\tau=m /\left(n e^{2} \rho\right)$
(c) $E_{F}=\frac{K^{2}}{2 m}\left(3 \pi^{2} n\right)^{2 / 3}$
(d) $v_{F}=\frac{\not K}{m}\left(3 \pi^{2} n\right)$
(e) $l_{F}=v_{F} \tau l_{F}=v_{F} \tau$

Chapter 7 Homework

Prob 1

(a) The dispersion relation is $\omega=\omega_{\mathrm{m}}\left|\sin \frac{1}{2} \mathrm{Ka}\right|$. We solve this for K to obtain $\mathrm{K}=(2 / \mathrm{a}) \sin ^{-1}\left(\omega / \omega_{\mathrm{m}}\right)$, whence $\mathrm{dK} / \mathrm{d} \omega=(2 / \mathrm{a})\left(\omega_{\mathrm{m}}{ }^{2}-\omega^{2}\right)^{-1 / 2}$ and, from (15), $\mathrm{D}(\omega)$ $=(2 \mathrm{~L} / \pi \mathrm{a})\left(\omega_{\mathrm{m}}{ }^{2}-\omega^{2}\right)^{-1 / 2}$. This is singular at $\omega=\omega_{\mathrm{m}}$. (b) The volume of a sphere of radius K in Fourier space is $\Omega=4 \pi \mathrm{~K}^{3} / 3=(4 \pi / 3)\left[\left(\omega_{0}-\omega\right) / \mathrm{A}\right]^{3 / 2}$, and the density of orbitals near ω_{0} is $D(\omega)=(\mathrm{L} / 2 \pi)^{3}|\mathrm{~d} \Omega / \mathrm{d} \omega|=(\mathrm{L} / 2 \pi)^{3}\left(2 \pi / \mathrm{A}^{3 / 2}\right)\left(\omega_{0}-\omega\right)^{1 / 2}$, provided $\omega<\omega_{0}$. It is apparent that $\mathrm{D}(\omega)$ vanishes for ω above the minimum ω_{0}.

Prob 2

(a) The motion is constrained to each layer and is therefore essentially two-dimensional. Consider one plane of area A. There is one allowed value of K per area $(2 \pi / L)^{2}$ in K space, or $(\mathrm{L} / 2 \pi)^{2}=\mathrm{A} / 4 \pi^{2}$ allowed values of K per unit area of K space. The total number of modes with wavevector less than K is, with $\omega=\mathrm{vK}$,

$$
\mathrm{N}=\left(\mathrm{A} / 4 \pi^{2}\right)\left(\pi \mathrm{K}^{2}\right)=\mathrm{A} \omega^{2} / 4 \pi \mathrm{v}^{2} .
$$

The density of modes of each polarization type is $\mathrm{D}(\omega)=\mathrm{dN} / \mathrm{d} \omega=\mathrm{A} \omega / 2 \pi \mathrm{v}^{2}$. The thermal average phonon energy for the two polarization types is, for each layer,

$$
\mathrm{U}=2 \int_{0}^{\omega_{\mathrm{D}}} \mathrm{D}(\omega) \mathrm{n}(\omega, \tau) \hbar \omega \mathrm{d} \omega=2 \int_{0}^{\omega_{\mathrm{D}}} \frac{\mathrm{~A} \omega}{2 \pi \mathrm{v}^{2}} \frac{\hbar \omega}{\exp (\mathrm{~h} \omega / \tau)-1} \mathrm{~d} \omega,
$$

where ω_{D} is defined by $N=\int_{D}^{\omega_{D}} D(\omega) d \omega$. In the regime $\hbar \omega_{D} \gg \tau$, we have

$$
\mathrm{U} \cong \frac{2 A \tau^{3}}{2 \pi \mathrm{v}^{2} \hbar^{2}} \int_{0}^{\infty} \frac{\mathrm{x}^{2}}{\mathrm{e}^{\mathrm{x}}-1} \mathrm{dx} .
$$

Thus the heat capacity $\mathrm{C}=\mathrm{k}_{\mathrm{B}} \partial \mathrm{U} / \partial \tau \propto \mathrm{T}^{2}$.
(b) If the layers are weakly bound together, the system behaves as a linear structure with each plane as a vibrating unit. By induction from the results for 2 and 3 dimensions, we expect $\mathrm{C} \propto \mathrm{T}$. But this only holds at extremely low temperatures such that $\tau \ll \hbar \omega_{\mathrm{D}} \approx \hbar \mathrm{v} \mathrm{N}_{\text {layer }} / \mathrm{L}$, where $\mathrm{N}_{\text {layer }} / \mathrm{L}$ is the number of layers per unit length.

Prob 3
$D(\omega)=\frac{d N}{d \omega}=\frac{d N}{d k} \frac{d k}{d \omega}$
$1 D-N=\frac{L}{2 \pi} 2 k$
$2 D-N=\left(\frac{L}{2 \pi}\right)^{2} \pi k^{2}$
$3 D-N=\left(\frac{L}{2 \pi}\right)^{3} \frac{4}{3} \pi k^{3}$
$U=\int_{0}^{\omega_{D}} D(\omega)<n(\omega)>\not \kappa \omega d \omega$
$N=\int_{0}^{\omega_{D}} D(\omega)<n(\omega)>d \omega$
ω_{D} can be found from last equation. It will not depend on temperature.
In Kittel the case for 3 D is done. What is different in 1 D and 2 D is that $D(\omega)$ is different.
1D $D(\omega) \propto 1$
2D $D(\omega) \propto \omega$
3D $D(\omega) \propto \omega^{2}$
Following what was done in Kittel you will see, following a simple pattern that
1D $U \propto T^{2} \int_{0}^{x_{D}} d x \frac{x}{e^{x}-1}$
2D $U \propto T^{3} \int_{0}^{x_{D}} d x \frac{x^{2}}{e^{x}-1}$
3D $U \propto T^{4} \int_{0}^{x_{D}} d x \frac{x^{3}}{e^{x}-1}$
Thus in the low temperature limit the integrals are constants and since $C=\frac{d U}{d T}$, $C \propto T, T^{2}, T^{3}$ for 1D, 2D, 3D
In high temperature limit, x_{D} is small thus use $e^{x}-1 \approx x+x^{2} / 2+x^{3} / 6$ you will see $U \propto T$ in all cases. Thus in high temperature limit specific heat is constant. The exact expressions can be derived following Kittel and what I have here.

Chapter 8 Homework
 Prob 1

a. $\quad \mathrm{E}_{\mathrm{d}}=13.60 \mathrm{eV} \times \frac{\mathrm{m}^{*}}{\mathrm{~m}} \times \frac{1}{\varepsilon^{2}} \simeq 6.3 \times 10^{-4} \mathrm{eV}$
b. $\quad \mathrm{r}=\mathrm{a}_{\mathrm{H}} \times \varepsilon \times \frac{\mathrm{m}}{\mathrm{m}^{*}} \simeq 6 \times 10^{-6} \mathrm{~cm}$
c. Overlap will be significant at a concentration
$\mathrm{N}=\frac{1}{\frac{4 \pi}{3} \mathrm{r}^{3}} \approx 10^{15}$ atoms cm^{-3}

Prob 2

The velocity components are $\mathrm{v}_{\mathrm{x}}=\mathrm{h} \mathrm{k}_{\mathrm{x}} / \mathrm{m}_{\mathrm{t}} ; \mathrm{v}_{\mathrm{y}}=\mathrm{h} \mathrm{k}_{\mathrm{y}} / \mathrm{m}_{\mathrm{t}} ; \mathrm{v}_{\mathrm{z}}=\mathrm{h} \mathrm{k}_{\mathrm{z}} / \mathrm{m}_{\ell}$. The equation of motion in k space is $h d k / d t=-(e / c) v \times B$. Let B lie parallel to the k_{x} axis; then
$\mathrm{dk}_{\mathrm{x}} / \mathrm{dt}=0 ; \mathrm{dk}_{\mathrm{y}} / \mathrm{dt}=-\omega_{\ell} \mathrm{k}_{\mathrm{z}} ; \omega_{\ell} \equiv \mathrm{eB} / \mathrm{m}_{\ell} \mathrm{c} ; \mathrm{dk}_{\mathrm{z}} / \mathrm{dt}=\omega_{\mathrm{t}} \mathrm{k}_{\mathrm{y}} ; \omega_{\mathrm{t}} \equiv \mathrm{eB} / \mathrm{m}_{\mathrm{t}} \mathrm{c}$. We differentiate with respect to time to obtain $\mathrm{d}^{2} \mathrm{k}_{\mathrm{y}} / \mathrm{dt}^{2}=-\omega_{\ell} \mathrm{dk}_{\mathrm{z}} / \mathrm{dt}$; on substitution for $\mathrm{dk}_{z} / \mathrm{dt}$ we have $\mathrm{d}^{2} \mathrm{k}_{\mathrm{y}} / \mathrm{dt}^{2}+\omega_{\ell} \omega_{\mathrm{t}} \mathrm{k}_{\mathrm{y}}=0$, the equation of motion of a simple harmonic oscillator of natural frequency

$$
\omega_{0}=\left(\omega_{\ell} \omega_{\mathrm{t}}\right)^{1 / 2}=\mathrm{eB} /\left(\mathrm{m}_{\ell} \mathrm{m}_{\mathrm{t}}\right)^{1 / 2} \mathrm{c} .
$$

Prob 3

Simply plug in numbers to Kittel Chapter $8 \mathrm{Eq}(45,47)$ to get intrinsic concentration and chemical potential(also known as Fermi level)

Prob 4

(a) $\tau=\mu \mathrm{m} / e, \mu$ is the mobility
(b) $\sigma=n e \mu_{e}+p e \mu_{h}$
(c) $\sigma \propto T^{3 / 2} e^{-\frac{E_{g}}{2 k_{B} T}}$
$\log \sigma=$ Cons $\tan t+\frac{3}{2} \log T-\frac{E_{g}}{2 k_{B} T}$

