One note about the test, do not worry about numbers too much, if you have concept method and formula correct, wrong numerical answer will at most cost you 1 point out of 10.

Chapter 5 Homework

Prob 1

The number of moles per cm³ is $81 \times 10^{-3}/3 = 27 \times 10^{-3}$, so that the concentration is 16×10^{21} atoms cm⁻³. The mass of an atom of He³ is (3.017) (1.661) × $10^{-24} = 5.01 \times 10^{-24}$ g. Thus $\epsilon_F \simeq [(1.1 \times 10^{-54})/10^{-23}][(30)(16) \times 10^{21}]^{2/3} \approx 7 \times 10^{-16}$ erg, or $T_F \approx 5 K$.

Prob 2

The energy eigenvalues are $\varepsilon_k = \frac{\hbar^2}{2m} k^2$. The mean value over the volume of a sphere in k space is

$$<\varepsilon> = \frac{\hbar^2}{2m} \frac{\int k^2 dk \cdot k^2}{\int k^2 dk} = \frac{3}{5} \cdot \frac{\hbar^2}{2m} k_F^2 = \frac{3}{5} \varepsilon_F.$$

The total energy of N electrons is

$$U_0 = N \cdot \frac{3}{5} \varepsilon_F.$$

Prob 3

(a) $n = N/V = (m/M)/V = \rho_m/(63.546*10^{-3}/6.02*10^{-23}) = 8.464 \times 10^{28}$ Assuming 1 Copper atom contributes 1 electron. This problem is mostly plugging in numbers once you have the correct equation. Also the mass in the equations refer to effective mass of eletrons.

(b)
$$\tau = m/(ne^2\rho)$$

(c)
$$E_F = \frac{h^2}{2m} (3\pi^2 n)^{2/3}$$

$$(d) v_F = \frac{\cancel{h}}{m} (3\pi^2 n)$$

(e)
$$l_F = v_F \tau \ l_F = v_F \tau$$

Chapter 7 Homework

Prob 1

(a) The dispersion relation is $\omega = \omega_m |\sin \frac{1}{2} Ka|$. We solve this for K to obtain $K = (2/a)\sin^{-1}(\omega/\omega_m)$, whence $dK/d\omega = (2/a)(\omega_m^2 - \omega^2)^{-1/2}$ and, from (15), $D(\omega) = (2L/\pi a)(\omega_m^2 - \omega^2)^{-1/2}$. This is singular at $\omega = \omega_m$. (b) The volume of a sphere of radius K in Fourier space is $\Omega = 4\pi K^3/3 = (4\pi/3)[(\omega_0 - \omega)/A]^{3/2}$, and the density of orbitals near ω_0 is $D(\omega) = (L/2\pi)^3 |d\Omega/d\omega| = (L/2\pi)^3 (2\pi/A^{3/2})(\omega_0 - \omega)^{1/2}$, provided $\omega < \omega_0$. It is apparent that $D(\omega)$ vanishes for ω above the minimum ω_0 .

Prob 2

(a) The motion is constrained to each layer and is therefore essentially two-dimensional. Consider one plane of area A. There is one allowed value of K per area $(2\pi/L)^2$ in K space, or $(L/2\pi)^2 = A/4\pi^2$ allowed values of K per unit area of K space. The total number of modes with wavevector less than K is, with $\omega = vK$,

$$N = (A/4\pi^2)(\pi K^2) = A\omega^2/4\pi v^2$$
.

The density of modes of each polarization type is $D(\omega) = dN/d\omega = A\omega/2\pi v^2$. The thermal average phonon energy for the two polarization types is, for each layer,

$$U = 2 \int_0^{\omega_D} D(\omega) \ n(\omega, \tau) \ \hbar \omega \ d\omega = 2 \int_0^{\omega_D} \frac{A\omega}{2\pi v^2} \ \frac{\hbar \omega}{\exp(h\omega/\tau) - 1} d\omega,$$

where ω_D is defined by $N=\int_D^{\omega_D}D(\omega)~d\omega$. In the regime $\hbar\omega_D>>\tau$, we have

$$U \cong \frac{2A\tau^3}{2\pi v^2 \hbar^2} \int_0^\infty \frac{x^2}{e^x - 1} dx.$$

Thus the heat capacity $C = k_B \, \partial U / \partial \tau \, \propto \, T^2$.

(b) If the layers are weakly bound together, the system behaves as a linear structure with each plane as a vibrating unit. By induction from the results for 2 and 3 dimensions, we expect $C \propto T$. But this only holds at extremely low temperatures such that $\tau << \hbar \omega_D \approx \hbar v N_{\rm layer}/L \,, \text{ where } N_{\rm layer}/L \text{ is the number of layers per unit length.}$

Prob 3

$$D(\omega) = \frac{dN}{d\omega} = \frac{dN}{dk} \frac{dk}{d\omega}$$
$$1D - N = \frac{L}{2\pi} 2k$$
$$2D - N = (\frac{L}{2\pi})^2 \pi k^2$$
$$3D - N = (\frac{L}{2\pi})^3 \frac{4}{3} \pi k^3$$

$$U = \int_0^{\omega_D} D(\omega) < n(\omega) > \hbar \omega d\omega$$

$$N = \int_0^{\omega_D} D(\omega) < n(\omega) > d\omega$$

 $\omega_{\rm p}$ can be found from last equation. It will not depend on temperature.

In Kittel the case for 3D is done. What is different in 1D and 2D is that $D(\omega)$ is different.

1D
$$D(\omega) \propto 1$$

2D
$$D(\omega) \propto \omega$$

3D
$$D(\omega) \propto \omega^2$$

Following what was done in Kittel you will see, following a simple pattern that

1D
$$U \propto T^2 \int_0^{x_D} dx \frac{x}{e^x - 1}$$

2D
$$U \propto T^3 \int_0^{x_D} dx \frac{x^2}{e^x - 1}$$

3D
$$U \propto T^4 \int_0^{x_D} dx \frac{x^3}{e^x - 1}$$

Thus in the low temperature limit the integrals are constants and since $C = \frac{dU}{dT}$,

$$C \propto T$$
, T^2 , T^3 for 1D, 2D, 3D

In high temperature limit, x_D is small thus use $e^x - 1 \approx x + x^2 / 2 + x^3 / 6$ you will see $U \propto T$ in all cases. Thus in high temperature limit specific heat is constant. The exact expressions can be derived following Kittel and what I have here.

Chapter 8 Homework Prob 1

a.
$$E_d = 13.60 \text{ eV} \times \frac{m^*}{m} \times \frac{1}{\epsilon^2} \simeq 6.3 \times 10^{-4} \text{ eV}$$

b.
$$r = a_H \times \varepsilon \times \frac{m}{m^*} \simeq 6 \times 10^{-6} \text{ cm}$$

c. Overlap will be significant at a concentration

$$N = \frac{1}{\frac{4\pi}{3}r^3} \approx 10^{15} \, atoms \ cm^{-3}$$

Prob 2

The velocity components are $v_x = hk_x/m_t$; $v_y = hk_y/m_t$; $v_z = hk_z/m_\ell$. The equation of motion in k space is hk_z/m_ℓ . Let B lie parallel to the k_x axis; then

 $dk_x/dt=0;\ dk_y/dt=-\omega_\ell k_z;\ \omega_\ell\equiv eB/m_\ell c;\ dk_z/dt=\omega_t k_y;\ \omega_t\equiv eB/m_t c\ .\ We\ differentiate$ with respect to time to obtain $d^2k_y/dt^2=-\omega_\ell\ dk_z/dt$; on substitution for dk_z/dt we have $d^2k_y/dt^2+\omega_\ell \omega_t k_y=0$, the equation of motion of a simple harmonic oscillator of natural frequency

$$\omega_0 = (\omega_\ell \omega_t)^{1/2} = eB/(m_\ell m_t)^{1/2} c.$$

Prob 3

Simply plug in numbers to Kittel Chapter 8 Eq(45,47) to get intrinsic concentration and chemical potential(also known as Fermi level)

Prob 4

(a) $\tau = \mu m / e$, μ is the mobility

(b)
$$\sigma = ne\mu_e + pe\mu_h$$

(c)
$$\sigma \propto T^{3/2} e^{-\frac{E_g}{2k_BT}}$$

$$Log \sigma = Cons \tan t + \frac{3}{2} Log T - \frac{E_g}{2k_B T}$$