
One note about the test, do not worry about numbers too much, if you have concept 
method and formula correct, wrong numerical answer will at most cost you 1 point 
out of 10. 
 
Chapter 5 Homework 
 
Prob 1 
The number of moles per cm3 is 81 × 10–3/3 = 27 × 10–3, so that the concentration is 16 × 
1021 atoms cm–3. The mass of an atom of He3 is (3.017) (1.661) × 10–24 = 5.01 × 10–24 g. 
Thus 54 23 21 2 3 16

F [(1.1 10 ) 10 ][(30)(16) 10 ] 7 10− − −ε × × ≈ ×  erg, or TF ≈ 5K.  
 
 
 
Prob 2 

The energy eigenvalues are 
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The total energy of N electrons is 
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Prob 3 
(a) 3 2823/ ( / ) / / (63.546*10 / 6.02*10 ) 8.464 10mn N V m M V ρ − −= = = = × Assuming 1 
Copper atom contributes 1 electron. This problem is mostly plugging in numbers once 
you have the correct equation. Also the mass in the equations refer to effective mass of 
eletrons. 
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Chapter 7 Homework 
 
Prob 1 



(a) The dispersion relation is m
1| sin Ka|.
2

ω = ω  We solve this for K to obtain 

1
mK (2/a)sin ( / )−= ω ω , whence 2 2 1/ 2

mdK/d (2 / a)( )−ω = ω −ω  and, from (15), D( )ω  
2 2 1/ 2

m(2L/ a)( )−= π ω −ω . This is singular at ω = ωm. (b) The volume of a sphere of radius 
K in Fourier space is 3 3/2

04 K / 3 (4 / 3)[( ) / A]Ω = π = π ω −ω , and the density of orbitals 
near ω0 is 3 3 3/2 1/ 2

0D( )= (L/2 ) | d /d | (L/2 ) (2 / A )( )ω π Ω ω = π π ω −ω , provided ω < ω0. It is 
apparent that D(ω) vanishes for ω above the minimum ω0. 
 
 
Prob 2 
(a) The motion is constrained to each layer and is therefore essentially two-dimensional. 
Consider one plane of area A. There is one allowed value of K per area (2π/L)2 in K 
space, or (L/2π)2 = A/4π2 allowed values of K per unit area of K space. The total number 
of modes with wavevector less than K is, with ω = vK, 
 

2 2 2 2N (A/4 ) ( K ) A / 4 v .= π π = ω π  
 
The density of modes of each polarization type is D(ω) = dN/dω = Aω/2πv2. The thermal 
average phonon energy for the two polarization types is, for each layer, 
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where ωD is defined by D

D
N D( ) d

ω
= ω ω∫ . In the regime Dω >> τ , we have 
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Thus the heat capacity 2

BC k U/ T= ∂ ∂τ ∝ . 
 
(b) If the layers are weakly bound together, the system behaves as a linear structure with 
each plane as a vibrating unit. By induction from the results for 2 and 3 dimensions, we 
expect C T∝ . But this only holds at extremely low temperatures such that 

D layervN / Lτ << ω ≈  , where Nlayer/L is the number of layers per unit length. 
 
Prob 3 
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Dω can be found from last equation. It will not depend on temperature. 
In Kittel the case for 3D is done. What is different in 1D and 2D is that ( )D ω  is different. 
1D ( ) 1D ω ∝   
2D ( )D ω ω∝  
3D 2( )D ω ω∝  
Following what was done in Kittel you will see, following a simple pattern that 
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Thus in the low temperature limit the integrals are constants and since dUC
dT

= , 

2 3, ,C T T T∝  for 1D, 2D, 3D 
In high temperature limit, Dx  is small thus use 2 31 / 2 / 6xe x x x− ≈ + +  you will see 
U T∝  in all cases. Thus in high temperature limit specific heat is constant. The exact 
expressions can be derived following Kittel and what I have here. 
 
 
 
Chapter 8 Homework 
Prob 1 

4
d 2
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c. Overlap will be significant at a concentration 
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Prob 2 
 
The velocity components are x x t y y t z zv hk / m ; v hk / m ; v hk /m/ / /= = =



. The equation of 
motion in k space is h dk/dt (e/c) v B/ = − × . Let B lie parallel to the kx axis; then 



x y z z t y t tdk / dt 0; dk / dt k ; eB/m c; dk / dt k ; eB/m c= = −ω ω ≡ = ω ω ≡
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. We differentiate 

with respect to time to obtain 2 2
y zd k / dt dk / dt= −ω



; on substitution for dkz/dt we have 
2 2

y t yd k / dt k 0+ω ω =


, the equation of motion of a simple harmonic oscillator of natural 
frequency 
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Prob 3 
 
Simply plug in numbers to Kittel Chapter 8 Eq(45,47) to get intrinsic concentration and 
chemical potential(also known as Fermi level) 
 
Prob 4 
(a) /m eτ µ= , µ  is the mobility 
(b) e hne peσ µ µ= +  
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