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Magnetic susceptibility
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Bohr-van Leeuwen Theorem

(M) ={y L) =0 according to classical statistics.
— magnetism obeys quantum statistics.

Langevin (free spin}
paramagnetism

Main contribution for free atoms:

spins of electrons paramagnetism
orbital angular momenta of electrons

Induced orbital moments

diamagnetism
Van Vleck paramagnetism Electronic structure | Moment
"""""" X TTTTTTYTYT , H: 1s M~S
A pauli paramagnetism (metals) ~ Temperature
vt L He: 1s° M=0
Diamagnetism
unfilled shell M=0
All filled shells M=0

Magnetization M = magnetic moment per unit volume

Magnetic subsceptibility per unit volume y="— In vacuum. =2
H ; '

x = molar subsceptibility
g = Spec-iﬁc subsc-eptibility nuclear moments ~ 1073 electronic moments



Langevin diamagnetism equation

The diamagnetic susceptibility per unit volume is,

Z:_NZé,‘Z <F2>;

2
6mce

where N 1s the number of atoms per unit volume, <r2> 1s the mean

square distance of the electrons from the nucleus, Z 1s number of

electrons in each nuclei.
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Lenz's Law

When an emf is generated by a change in magnetic flux according to
Faraday's Law, the polarity of the induced emf is such that it produces

a current whose magnetic field opposes the change which produces it.
The induced magnetic field inside any loop of wire always acts to keep
the magnetic flux in the loop constant. In the examples below,

if the B field is increasing, the induced field acts in opposition to it.

If it is decreasing, the induced field acts in the direction of the applied field

to try to keep it constant.
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Diamagnetism
The orbital motion of electrons creates tiny atomic current loops, which produce
magnetic fields. When an external magnetic field is applied to a material, these
current loops will tend to align in such a way as to oppose the applied field. This
may be viewed as an atomic version of Lenz's law: induced magnetic fields tend to
oppose the change which created them. Materials in which this effect is the only
magnetic response are called diamagnetic. All materials are inherently diamagnetic,
but if the atoms have some net magnetic moment as in paramagnetic materials, or if
there is long-range ordering of atomic magnetic moments as in ferromagnetic
materials, these stronger effects are always dominant. Diamagnetism is the residual
magnetic behavior when materials are neither paramagnetic nor ferromagnetic.
Any conductor will show a strong diamagnetic effect in the presence of changing
magnetic fields because circulating currents will be generated in the conductor to
oppose the magnetic field changes. A superconductor will be a perfect diamagnet
since there is no resistance to the forming of the current loops.
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In a magnetic field H, the precession of the Z electrons within the atom is
equivalent to a current equal to —Z(e/C)(w,/2n) in electromagnetic units. Here
e/c 1s the magnitude of the electronic charge in emu, and ®, is the angular
Larmor frequency, where m is the electronic mass.

—eH
Y
2me

The magnetic moment p arising from this induced current is equal to the
product of the current and the area of the current loop, as in Eq. (3), where

_—EEML_E
H= c E?Tﬂ
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p? is the statistical average, over a large number of atoms, of the square of
the perpendicular distance of an electron from the field axis. This average is
equivalent to X? + y? if H is along z. For a random assembly of atoms, since

X2 =y? =72, one may write Eq. (4), where r? is the

7 =2/3(7 +7+27) =2/377

mean-square distance of the electron from the nucleus. Thus, the
diamagnetic susceptibility of N atoms is given by Eq. (5). This is P.
Langevin's result, as

_Np _ _ZeN
Xd = g = T Gme?
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Larmor Precession

J(x'
A :ljaﬁx' ( ?
c ‘ X—X
Magnetic (dipole) moment: = ZL d’x' x'x J(x') A=1 j X
c r
For a current loop: Jdx=1dl m:—mxx] dl =— Area
c ¢

For a charge moving in a loop:  J(x)=g vV 5(x —Xq) ( charge atx, )

m = Ljd3x’ X’Xq ch(X'—X ) :ix XV — q L = ¥ L Caution: we’ll set L ton L
2c 1 2¢ 1! 2mc in the quantum version
Classical c ratio 7 =7~ iy =5
‘lassical gyromagnetic ratio > e BT
: : dL
Torque on m in magnetic field: I'=——=mxB =y LxB

dt

— L precesses about B with the Larmor frequency o, =yB = 95

2mec
_48

dv g
[Lorentz force: m i = - vxB — cyclotron frequency @, e 20,



Langevin Diamagnetism Equation

Diamagnetism ~ Lenz’s law: induced current opposes flux changes. ¥ )

. . : e B 1
Larmor theorem: weak B on ¢ in atom — precession with freq o, = =—a,

Larmor precession ), Ze' B 1 Z e’B 5
I=(-Ze)—=——— S 2\ =
of Ze’s: ( e) 4rmc #_Cfﬁ<p> <'O>

Langevin diamagnetism
2
B 6mec same as QM result
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He Ne Ar Kr Xe Good for inert gases
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Xy in CGS in 107% em®mole: -1.9 79 ~194  -98. 0 —43 0 and dielectric solids
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experiment

Failure: conduction electrons (Landau diamagnetism & dHVA effect)



1. Diamagnetic susceptibility of atomic hydrogen. The wave function of the
hydrogen atom in its ground state (ls) is ¢= (wad) ' exp(—rlay), where
ap = hoime” = 0528 X 10~ % cm. The charge density is plx, ¥, z) = —ell®, according
to the statistical interpretation of the wave function. Show that for this state
{r*) = 34k, and calculate the molar diamagnetic susceptibility of atomic hydrogen
(—2.36 % 107" em"/mole).



Paramagnetism

Electronic paramagnetism:

1. Atoms, molecules, and lattice defects possessing an odd number
of electrons.

2. Free atoms and 1ons with a partly filled inner shell: transition
clements; 1ons 1soelectronic with transition elements; rare earth
and actinide elements.

3. A few compounds with an even number of electrons, including
molecular oxygen and organic biradicals.

4. Metals.



Quantum Theory of Paramagnetism

Magnetic moment of free atom or 1on: n=yhJ =-guzJ J=L<+S
B ) Caution: J here 1s
y = gyromagnetic ratio. #p = Bohr magneton. dimensionless.
g — g factor. & My ==y 1 eh
Hy = 5 ~ spin magnetic moment of free electron
mc
For electrons g = 2.0023
] J(J+1)+S(S+1)—L(L+1)
For free atoms, g=1+ D
2J(J+1)
U=—n-B =m, g, B m, =—J, =T+l J—1,J
m, s
| e
For a free electron, L=0, S=%,g=2, - 5 Anomalous
- m,=x%, U=+u,B. N Zeeman effect
J Hp _...;_.é_ §
c 1.00
JV_ 8_’8 #E %
N = : Y P s v -—§| 0.75 Lower state
=7
050
i?\’TJr e BPuB g 0.25 Upper state
N - _ = 1 | t
N efHE o FuB 0 05 10 15 20

uB/ksT
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The energy levels of the system 1n a magnetic field are
U=—p-B=m,gu,B,

where m, 1s the azimuthal quantum number and has the values
J,J—1,...,—J. For a single spin with no orbital moment we have
m,==x1/2andg=2, U==xu,B.




If a system has only two levels the equilibrium populations are, with

=k, T

N, exp(uB/ 1) _
N exp(uB/7)+exp(—uB/7)’
N, exp(—uB /1)

N  exp(uB/7)+exp(—uB/7)
Here N,, N, are the populations of the lower and upper levels.
N = N, + N, 1s the total number of atoms.
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Magnetic moment (Bohr magnetons/ion)
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The projection of the total magnetization
for N atoms per unit volume 1is,
withx= uB/k,T,

M =(N,-N,)u=Nu=——"—= Nutanhx.
e +e
Here x <« 1, tanhx = x, and we have

M =Nu(uB/kgT).



In a magnetic field an atom with angular momentum quantum number |
has 2] + 1 equally spaced energy levels. The magnetization (Fig. 4) is given by

M= NngsB;(I} ; (x = gjﬁﬁB&BT} ) (19)
where the Brillouin function B 7 is defined by
27 + 1 2
Bj(x) = ]2] ctnh ((—J;—f—lh) - %ctnh (-g—}) . (20)

Equation (17) is a special case of (20) for | = z,
Forx = uB/k;T < 1, we have
3

ta—Et, (21)

=

ctmhx =

o e

and the susceptibility is

M _NIJ + Dg’ui _ Np'us

I

_C
=7 (22)

Here p is the effective number of Bohr magnetons, defined as

p=glJ(J+1)1** . (23)
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Lanthanide
contraction lon

r=111A (e**
PTH-LL
Nd?*
Pm®*

Configuration Basic level

Rare Earth Ions

Table 1 Effective magneton numbers p for trivalent lanthanide group ions

SNTETELIE . A | e S T e L D e D

°F 52
3 H,1
I a2
5 I_]

AR )

;}(caI;jl =

sy

2.54
3.58
3.62
2.65

T e N~ T Ml el T

e T

plexp),

approximate

2.4
35
35

Sm* 4)(5 5o PE
Eu®" 4f°psp"

5
'Hy

0.84
0

15
3.4

Gd’* 4f "Bsp®
Th** 4f%5sp°
D},M 4fﬂss§pﬁ
H?:r 4)(]1 55;‘3?}6
oot
r,=094A Ybh?*

4fradius ~ 0.3A

794
9.72
10.63
10.60
9.59
7.57
4.54

5.0
95
10.6
10.4
9.5
73
45

Perturbation from higher states
significant because splitting
between L-S multiplets ~ kg T
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Hund’s rules
Suppose we have a free atom or 10on in which all electronic shells are
filled or empty except for one, whose one-electron levels are characterized
by orbital angular momentum /. Since for given / there are 2/ +1 values
[. can have (/,/—1,/-2,...,—/) and two possible spin directions for each
[., such a shell will contain 2(2/+1) one-electron levels. Let » be the
number of electrons in the shell, with 0 <n < 2(2/+1). If the electrons
did not interact with on¢ another, the 1onic ground state would be
degenerate, reflecting the large number of ways of putting » electrons
into more than » levels. However, this degeneracy is considerably
lifted by electron-electron Coulomb interactions as well as by the

electron spin-orbit interaction.



1. Russel-Saunder coupling To a good approximation the Hamiltonian
of the atom or ion can be taken to commute with the total electronic

spin and orbital angular momenta, S and I:, as well as with the total

electronic angular momentum J=L+S.

2. Hund's first rule Out of the many states one can form by placing

n electrons into the 2(2/+1) levels of partially filled shells, those that
lie lowest in energy have the largest total spin §' that is consistent with
the exclusion principle.

3. Hund's second rule The total orbital angular momentum L of the
lowest-lying states has the largest value that is consistent with Hund's
first rule, and with the exclusion principle.



4. Hund's third rule The first two rules determine the values of L and §
assumed by the states of lowest energy. This still leaves (2L +1)(25 +1)
possible states. These can be further classified according to their total
angular momentum J, which, according to the basic rules of angular
momentum composition, can take on all integral values between

‘L — S| and L + 5. The degeneracy of the set of (2L +1)(25 +1) states

1s lifted by the spin-orbit coupling, which, within this set of states, can
be represented by a term 1n the Hamuiltonian of the simple form
A(L-S). Spin-orbit coupling will favor maximum J 1f 4 1s negative,
and mimimum J 1f 4 1s positive. A 1s positive for shells that are less
than halt filled and negative for shells that are more than half filled.
J=|L-S|, n<Q2I+1),

J=L+S5, n>21+]).




Hund’s Rules

For filled shells, spin orbit couplings do not change order of levels.

Hund’s rule ( L-S coupling scheme ):
Outer shell electrons of an atom in its ground state should assume
1. Maximum value of S allowed by exclusion principle.
2. Maximum value of L compatible with (1).
3. J=|L-S| for less than half-filled shells.
J=L+S for more than half-filled shells.

Causes:

1. Parallel spins have lower Coulomb energy.

2. e’smeet less frequently if orbiting in same direction (parallel Ls).
3. Spin orbit coupling lowers energy for L-S < 0.

Mn**:  3d°> (1) — §=5/2 exclusion principle — L =2+1+0-1-2=0
Ced*:  4f1 L=3, §=1% (3) — J=|3—%|=5/2 *Fy),

Pt 42 (1) = S=1 () — L=3+2=5 (3) —J=|5-1|=4 °H,




Table 31.2

.
Tl

GROUND STATES OF IONS WITH PARTIALLY FILLED 4- OR f~SHELLS,
AS CONSTRUCTED FROM HUND'S RULES®

d-shell (I = 2)

alb=2% 1 & -1 -2 |s|o=|sy J SYMBOL
1 l l,”z 2 3!2‘ :D‘llli
2 | il | 1 3 2 \,_u - Fy

3 ! i i 32 3 (! =51 *Fin
4 1 1 | 1 2 2 0 | Dy

5 I T T T 52, 0 |52 *Ss2
6 i | t t t 2 2 4 :D..

s » » 2 ot ot |1 30 |a LaS |,

9 i g [ | 1/2 2 5/2) Dy
10 L it i 0 o |o 'S,

S-shell (I = 3)

nll,=3 2 1, 0,-1,-2,-3 s |L=|zL J

1 } 1/2 3 | 52 Fyga
2 TR 1 5 4 :m

3 TR | 32 6 972 1 — < T

4 Vol 2 6 |4 (I=l-=SI s

5 [ S S S | 52 5 572 *Hs)y
6 O S SR G| 3 i o ' Fo

7 ! L & b % ¥ i 72 0 | 7/2 :S,.,
8 £ 2 1 r 1T ¥ 1 3 3 | 6 Fe

9 g8ttt 512 | 5 15/2 :H.m
10 I S 2| 6 8 s Iy

1 g8 o oa ottt 2| 6 |ispff=L*S |4,
12 O B R I | 1 5 6 *H,

13 VRN S - S | 12 3 72 ) F,
14 Pty oaonon 0 0 0 1S,

4t = spin 4:1 = spin —4.
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2.3 The principal terms in the electronic Hamiltonian

1. The electron Kinetic energy

2. The electron potential energy —— free ion potential energy V¥,

(the field due to the nucleus and
other inner electrons)

crystalline potential V.
(the field due to charges outside
the atom)

3. The spin-orbit coupling energy

An electron moves at a velocity v = £ , In an electrostatic
field E created by the proton. In the electl on frame, a
magnetic field B’ = —CLL x E appears. Since an electl on
possesses an intrinsic magnetic moment # = ——h8, it

2m
experiences a coupling energy of the spin to the orbital

. o4 eh - .
motion: jj,, — — . B’ = S-[E x p]
2m?2c?




Often the electric field in an atom points radially outward and
1LdV(r) e e?
=2 = SV = -2)

e dr r2

is a function of r only, so that £(r) = -

directs a radial direction.

|:> E xp= %E(r)fx = ?E(r)ﬁ
vl \

position vector momentum vector angular momentum

atomic number (average) nucleus-electron separation

‘:|‘> J =S5+ [ (total angular momentum)



Lande g factor

f; : total orbital angular momentum of the electrons of an atom (— Z_I?-e')
5‘ : total spin angular momentum (— Z%)
J=L+S5
The eigenstates of the atomic Hamiltonian:

H|Eo, L, S, J,M) = Ey|Eqy, L, S, J, M)
L? - hWPL(L+1),8% = h*S(S +1),J? = h*J(J +1),J., — hM

Recursion relation:
Ji|Eo, L, S, J, M) =h\/J(J+1)— M(M +1)|Ey, L, S,J, M £ 1)

M=JJ—1,-—J

- J
Y

2.J 4+ 1 degenerate multiplets




Energy diagram in a magnetic field:

Zeeman term '?:h = hwp (-ffz + 25‘3)

o

Larmor frequency _Zﬁ electron g-factor (=2.0023)
T
. _E-J * fj> N
L = J
RJ(J+1)




.

>=ﬁ{ML+U+;UU+UL@+USW+U@

<..
<§-j>=n L(S+1)+%[J(J+1)—L(L+1)—S(S+1)]}

1l

7%1 - g.]th jz

/
3 S(S+1)—-L(L+1)
2 2J(J +1)

1L

Hi|Eo, L, S, J, M) = Ey|Ey., L, S, J, M)
/

+

gjimthWL

M=0

2

U:§

! 2

M’:1

2
5 . M = 1
J=2 2
2 3
M=-2
2



splitting of states due to spin-orbit coupling
into groups J=L+S8,L+S5-1,...|L-8|.

magnetic moment [ = g ;LI B']

AN

3 S(S+1)-L(L+1)

Lande g-factor

ST ()
§S=0-g, =1
L=0-g,=2

4. The coupling of the electron spin and orbital magnetic moments
to an external magnetic field

5. The magnetic coupling of the nuclear spin to the electronic
spin and orbital moments.

6. The coupling of the nuclear electrical quadruple moment to
the electronic charge.



9.2.3 Total Angular Momentum and Total Magnetic Moment
The total angular momentum of an atom 1s given by
J=L+8. (9.25)
The total magnetic moment 1s given by
m = —pp (L +25). (0.26)

In guantum mechanics the components of J, L, and S are operators that
satisfy commutation relatioms. As we learned in gquantum mechanies, it is
possible to diagonalize J? and J, simultaneously.

P j, =) = 0+ 1) 5,02 § = D%% (9.27)
o g de) =2 40z} —3<4=53 (0.28)

Note that 7. =0, +1...., +7 or j. = :I:%. j:g ..... + . We can write that
m = —gupd. (9.29)

This defines the operator § because we have J =1L 4+ S and
gl =L+ 25, (9.30]
We can use these definitions to show that
J. I=(L+8S)-(L+S)=L*+8*4+2L-8 (0.31)

and
g3 - J=(L+8S)- (L+28) =L*+28?+3L-8. (0.32)
We can eliminate L - 8 and obtain
B E n ls{s + 1) =1 +1)
T2 G+

(0.33)

This eigenvalue of g i1s called the Landé g-factor.



EXAMPLE

Clonsider an ion of Fe?t: it has 6 electrons in the 3d level. We can put 5 of
them in spin up states (since d means { = 2 and my can be —2, —1,0,1,2] and
to maximize S, hence,

TTTTT] gives §=2.

The maximum value of L-value 12 given by
L=-2-140414+24+2=2.

The J-value (since it 15 over half-filled) is

J=L+5=4
Therefore we have
B 3+12{3]—2(Sj 3
S I R TE S
One can work out some examples listed in Table 9.1, The ground state
notation is 2°+1L;, where L = 0,1,2,3.4.... are denoted by the letters

S P DVF G L respectively,



Curie’s law in solids
Insulating crystals containing rare earth 1ons are found to obey Curie's
law. One frequently writes the law in:
_IN wp
3V kT
where p 1s the "effective Bohr magneton number",
p=gULS)[J(J +D]".

In all cases the magnetism of rare earth 1ons in an isulating solid 1s well

4

described by treating them as 1solated 1ons. For transition metal ions from
the 1ron group, one finds that although Curie's law 1s obeyed, the value

of p 1s still given by above equation only if one assumes that although

S 1s given by Hund's rules, L 1s zero and J=S. This 1s known as the

quenching of the orbital angular momentum.



Table 31.3

o T

CALCULATED AND MEASURED EFFECTIVE MAGNETON NUMBERS p FOR

RARE EARTH IONS*

ELEMENT

(TRIPLY  BASIC ELECTRON GROUND-STATE

IONIZED) CONFIGURATION TERM CALCULATED? p  MEASUREDS p
La 4f° s 0.00 diamagnetic
Ce af! S -~ 2.54 24
Pr 412 H, 3.58 35
Nd 453 i 3.62 3.5
Pm 414 o A 2,68 —
Sm 413 °Hs 0.84 1.5
Eu 41 L A 0.00 3.4
Gd a7 o T 7.94 8.0
Tb 418 r 9.72 9.5
Dy 4f° Hisi 10.63 10.6
Ho 4110 " 10.60 104
Er 411 “Iiss 9.59 9.5
Tm 4112 "He 7.57 7.3
Yb 4413 3F., 4.54 4.5
Lu 4114 s 0.00 diamagnetic

- g -



Table 31.4
CALCULATED AND MEASURED EFFECTIVE MAGNETON NUMBERS p FOR

THE IRON (3d) GROUP IONS*

ELEMENT BASIC GROUND-
(AND ELECTRON STATE CALCULATED? p
IONIZATION) CONFIGURATION M (J=8) (J=|L % S|)  MEASURED¢p

Ti*t 34" 2Dy 1.73 1.55 —
\ Al 3d* 2Dz 1.73 1.55 1.8
Y 3d* 3F, 2.83 1.63 28
v+ 3d® ) 3.87 0.77 38
Cr3t/ 3d? “Fa 3.87 0.77 3.7
Mn** 3d° *Fsa 3.87 0.77 40
Ci** 3d* Dy 490 0 4.8
Mn3* 3d* *Do 4.90 0 50
Mn?* 3d° L 592 592 59
Fe** v/ 3d° $Ss/2 592 592 59
Fe** 3d°® D, 490 6.70 5.4
Co*™ 3d’ *Fg2 3.87 6.54 4.8
Ni?* 3d® Fa 2.83 5.59 32

Cu?* 3d° 2Dy, 1.73 3.55 1.9

L li-"’l-‘ﬁn



Crystal field splitting

Crystal field splitting 1s unimportant for rare earth 1ons, because their
partially filled 4 / shells lie deep inside the ion. In contrast to this, the
partially filled d-shells of transition metal 1ons are the outermost
electronic shells, and are therefore far more strongly influenced by

their crystalline environment. The interaction of the paramagnetic 10ns
with the crystal field has two major effects: the coupling of L and S
vectors 1s largely broken up, so that the states are no longer specified by
their J values; the 2L+1 sublevels belonging to a given L which are

degenerate 1n the free 1on may now be split by the crystal field.



2.4 Example of spin-orbit coupling and crystalline fields

A

y4

'K‘_:_:

atom (single p electron)

potential of a free  potential due to the

atom / / four charges
~o ]

H=—-(p—qA)y +V, +V, +AL-S+2/H-S

2m / \

vector potential coupling between the electron spin
(dc magnetic field) to the external magnetic field

fle = —7.hS = =285 > B——%h—

\ \ \ 2m

electron spin electron Bohr magneton
magnetic moment  gyromagnetic

ratio

qh



Crystal Field Splitting

Rare earth group: 4f shell lies within 5s & 5p shells
— behaves like in free atom.
Iron group: 3d shell is outer shell
— subject to crystal field (E from neighbors).
— L-S coupling broken-up: J not good quantum number.
Degenerate 2L+1 levels splitted : their contribution to moment diminished.

@ @ ®

ek




Consider a two-level system with an energy splitting
k,A between upper and lower states; the splitting may
arise from a magnetic field or in other ways. Show that

the heat capacity per system 1is:

AITY e’
C:[%] e
A (l+eé"'f)

Peaks of this type in the heat capacity are often known as

Schottky anomalies.



