- 1. Consider a dipole in an external electric field $\vec{E} = E_0 \hat{y}$ where E_0 is a constant. For the four cases of orientation of the dipole (p is the magnitude of the dipole moment):
 - (i) \$\vec{p} = p\hat{x}\$
 - (ii) $\vec{p} = p\hat{y}$
 - (iii) $\vec{p} = -p\hat{x}$
 - (iv) $\vec{p} = -p\hat{y}$
 - a. Find the potential energy of the dipole in this external field. Order your answers from highest to lowest potential energy.
 - b. If the dipole were free to rotate in this external electric field, which orientation would be the equilibrium alignment? (as a hint, consider the analogy of a particle in the gravitational field of the earth; its potential energy increases with increasing altitude above the surface. If left free, in what direction of change of potential energy does it go?)
- 2. A point dipole \(\vec{p} = p_0 \hat{y}\) is located at the origin of the coordinates and \(p_0 = 1.00 \times 10^{-15} \text{Cm}\). At a distance of 0.01 meters from the dipole, find the electric field at each of the following locations and, on a diagram, sketch in the direction of the field at each point:
 - along the positive x-axis.
 - along the positive y-axis.
 - along the negative x-axis.
 - along the negative y-axis.
 - e. at a point in the first quadrant in the x-y plane, making an angle of 45° with both the positive-x and positive-y axes.
- **5.** Linear ionic crystal. Consider a line of 2N ions of alternating charge $\pm q$ with a repulsive potential energy A/R^n between nearest neighbors. (a) Show that at the equilibrium separation

(CGS)
$$U(R_0) = -\frac{2Nq^2 \ln 2}{R_0} \left(1 - \frac{1}{n}\right) .$$

(b) Let the crystal be compressed so that $R_0 \to R_0(1-\delta)$. Show that the work done in compressing a unit length of the crystal has the leading term $\frac{1}{2}C\delta^2$, where

(CGS)
$$C = \frac{(n-1)q^2 \ln 2}{R_0} \ .$$

To obtain the results in SI, replace q^2 by $q^2/4\pi\epsilon_0$. Note: We should not expect to obtain this result from the expression for $U(R_0)$, but we must use the complete expression for U(R).