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Crxsta_ll binding:
The cohesive energy of a

crystal is defined as the
energy that must be added
to the crystal to separate its
components into neutral free
atoms at rest, at infinite
separation, Wlilh_ the same
electronic configuration.
Lattice energy is the energy
required fo separate its
component ions into free
ions.
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2b. Definition of A Dipole. “A dipole” 1s defined as a system con-
sisting of two equal but oppositely charged point charges: q; = g and
> = —q. For that case the dipole moment, g, is:

P=qiT) + oy = gqry — qra = q(Ty — 72) = g, (2)

where ¥} — 7 = F the vector separation of the charges, points from the
negative charge (—q) to the positive charge (4gq) (see Fig.2). Note that
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Figure 2. Vectors used to de-
fine an electric dipole.



2c. Electric Field Due to a Dipole. The electric field and the
electric potential at any point in the vicinity of a dipole can be straight-
forwardly calculated just by adding the contributions due to each of the
charges. For example, consider a dipole whose center is at the origin
(Fig. 3). At point P you can calculate the field due to the two charges.
The answer 1s:

F—E/2  F4E2
7—£2) [P+ E22 ]

E(7) = keq [ (3)

where 7 1s the vector from the origin to P.
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Figure 3. Position vectors for
the electric field of a dipole.



2d. Electric Field Due to a “Point” Dipole. An interesting result
occurs if we take the dipole to be “very small.” Here we mean that the
dipole has a spatial size, £, that is negligible compared with the distance r
to the point P where the field of the dipole is observed. The result is that
the field at P due to the point dipole at the origin is well-approximated

by
SF-R)F P

E@) =k | (<)

Note that there is one component in the 7 direction and another in the g
direction. The expression becomes the exact answer for E as the ratio £/r
bhecomes vanishingly small, regardless of whether  and F become small
or not.

Figure 4. Symbaols used to define the

potential at a point P due to an elec-
tric dipole of moment p at the origin.
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2e. Potential Due to a “Point” Dipole. The potential, V(r), can
be similarly determined, yielding (see Fig. 4 for symbols):*

This is the potential at a distance r from a point-like dipole. The inter-
esting thing about these expressions is that they depend neither on the
charge nor the spatial size, but on the combination @, the dipole moment.
Notice also that the potential varies with #. For example, at any point on
a line perpendicular to the direction of p the potential V is zero. For a
given value of r, V' has its maximum value for the point where r 1s in the
direction of p. Contrast that with the potential due to a point charge at
the origin: for that case, V' has the same value for a fixed |F], no matter
what the direction of 7.
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Figure 5. Coordinate- Figure 6. Dipole potential-space symbols for
space symhbol defini- points at constant radius, varving angle.
tions for all points at

constant radius.




Van der Waals interactions
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The wvibration frequency of the oscillator is related to the force constant 4 and the
(reduced) mass of the electron m by k/m = . We assume that the system is in its
vibrational ground state. When the two dipoles are separated by an infinite distance (7>
— o), the total energy of the system will simply be the sum of their zero-point energies

1 1 |k
(2.1) E(r, %m]:EthLEhm‘ = |—.

\ m



Obviously at his infinite separation the mdividual dipole moments will not affect each
other and thus be zero on average. If we now want to compute the interactions between
the two oscillators for finite separations, we need to write down their Hamiltonian. It will
be the sum of the interactions of the two at rest (no correlations). Hyp. and the contribution
arising from the dipole-dipole interactions. Uyq:

(2.2) H=H,+U,

1,01 ., 1., 1.,
(2.3) H, = —mx] +=mx;, +—kx; +— kx;
2 2 2 2

the dipole-dipole interactions are

3(}31 '}:12 )(pz ";12 )_p1 '.-!;-.’2
Are 1, |

(2.4) U, =



For simplicity we only consider one direction for the moment. But keep in mind that we
still have to average the end result over all orientations. which only changes the constant

pre-factor. Thusx-7,, =0. for x=x, andx=2x,. This simplifies the dipole-dipole

interactions to

(2.5) U., __F EPE _

"2

3
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where we have temporarily ignored the factor 1/(4mg). We can then write the

Hamiltonian of the system as

1, 1

(2.6) H =—m, +=mi; +lh‘f +lf{:\’§ —— XX,
2 2 2 2
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What we are really interested in i1s the net-dipole-dipole interaction between the two
oscillators at finite separation. In that case. the two harmonic oscillators are coupled and
this leads to a change in the ground-state energy of the system. Let us denote the
resonance frequencies of these coupled oscillators by ey and a» respectively. The zero
point energy of the coupled system 1s Y2hicy + Y2hap. The change in energy due to the
coupling is equal to this zero-point energy minus the zero-point energy of the oscillators
at mfinite separation:

&Emr :Emr (}*2)_Emr (}*2 _}m) :%h(ml —{Zﬂ)ﬂ—%ﬁ({ﬂz —iﬂ)

(2.7) { {
&Emr :_h[ﬂ— +—h[m2 +1
2 0] 2 0,




Now we only need to calculate en and a». For this reconsider the Hamiltonian in equ.
(2.6). The last three terms form a quadratic equation. Therefore. we can substitute the
variables. x; and x, in the following way:

(2.8) X=x+x, and Avr=(x,—x,)

= X, = %{X ~Ax) and x,= %(l’-{- Av)  and  xx, = (_YE - &1‘2)

'

So we can rewrite the quadratic terms in equ. (X.6) as

- b

(2.9) %f{[}{ +Ax) +%I;(X N R S o %A—(zf +2A¥2)- 'i (X2 +Ax?)
"2 < M2
= Mokt Y 2k + & |ar
- "2 - "2

The time-derivatives of the variables. x; and x». are

(2.10) f=X+At and x,=X-Ax

Inserting these and equ.(x.9) into the Hamiltonian. we obtain

4

(2.11) H= %m(zi’? I [2;;— - ]Xz +%m(2£i‘2 )+%[2;; +€—3]m1
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which represents the two harmonic oscillators with resonance frequencies

| - | S
| ,L i !
(2.12) o = |5f1__° ad @, = | |14-6
1 | 3 3
'\, i Zfrru - V m 2&7’13

Now we can reconsider the difference in the total energy in equ.(x.7). where we wanted
to compute ey and a». We can now write

[ 3 ) 4
o) | e e e _
(213) _1: ||]-_ 3 ::]-_ 3 _ 76 +O(F*129)
o \ 2k Ak, 32k°r;
@2 |' e’ e’ e’ 9
and — =+ =l 6+O(r12 )
o \ 2k Akr, 32k~

Inserting these expressions into AE;,. we obtain the famous r power law behavior of
the van der Waals dispersion forces:

p— —_—
e

32k°rS (4me,)” 3215 (4me,)’
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(2.14) AE, =3 e 0:°)



Van de Waals-London interaction

Consider two atoms (1 and 2) separated by a distance .

If the instantaneous dipole moment of atom 1 is pi1, then

there will be an electric field proportional to p1/#° ata
distance » from the atom. This will induce a dipole

moment in atom 2 proportional to the field:

a p

3

p2=ak ~

., Where « 1s the polarizability of the atom.




Ak

Since tw0 dipoles have an energy of mteractmn proportional
to the product of their moments divided by the cubic of

the distance between them, there will be a lowering of

energy of order
2
P lf - - ‘? associated with the induced moment.
r F

Since the energy drop depends on p1’, its time average

does not vanish, even though the average value of p1 1s zero.



Repulsive interaction

The Pauli exclusion principle prevents multiple occupancy,
electron distributions of atoms with closed shells can overlap
only if accompanied by the partial promotion of electrons

to unoccupied high energy states of the atoms.

Experimentally. one finds Lennard-Jones potential,

12 &
U(R)=4¢ [[%) —(%J } where £ and o are the new

parameters with 460° = 4 and 40" = B.
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Equilibrium lattice constants

If there are NV atoms 1 the cryshl the total pmeutial energy 1s:

1
me __MZI-E ‘ ‘
N )Z[PER {PHR

where p, R 1s the distance between reference atom 7 and

other atom  in terms of the nearest neighbor distance R.

For FCC structure, > p,~~ =12.13188. D p, ™ =14.45392

J J
If there are V atoms 1n the crystal. the total potential energy 1s:

r =t o9
Wt _(_ _ppe (12)(12. 13)
dR

therefore R, / ¢ =1.09.




Cohesive Energy

If there are N atoms in the crystal, the total potential energy 1s:

Umm(R)zN{(lzﬂ)[g —(14_45)[%} }

and, at R=R,, U__(R,)=—(2.15)(4Ns).
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Table 4.1  Van der Waals summations for three lattices

Crystal Ag F Ag[24,,
fee 14.4519 12.1319 R.6078
hcp 14.4548 12.1353 8.6088
bee 12.2519 9.1142 82349

The ground-state energy per atom is

ol -l

The ratio (d/0) is varied to find the nearest-neighbor spacing d with the lowest ground-
state energy. Instead of varying d, choose another parameter Y to vary:

E./N = 2e

':F 6
=(2 46
¥ (:i) (4.6]
E_(Y)/N = 26[A, Y — A,Y] (4.7)
0= %2 2epa, v, - Ad (4.8)

A
= e 4.9
% 24, 4.9)
AI

E,(Y,)/N = — £-o5 = —8.608E (4.10)

24,



lonic crystals

lonic crystals are made up of

positive and negative ions. The
ionic bond results from the
electrostatic interaction of

oppositely charged ions.

Cohesive energy 1s given by the potential

energy of classical particles localized at

the equilibrium positions. The total cohesive

energy per 10N pair 1s:

U(r)=U""(r)+ U (r), where r is the

[ o= ° -"'Q e nearest-neighbor distance.
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U™ (r) = Aexp(-r; / p), where A and p are

empirical parameters.
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U“r)=%q"/ ;. In NaC | structure, we have N molecules

or 2N 1ons. The total lattice energy 1s defined as the energy
required to separate the crystal into individual 10ons.

If we detine 7; = p, R, where R 1s the nearest-neighbor

separation.
(2 exp(—R/ p)— qz / R (nearest 11eighbﬂr)-
L.'T__ m— : (
A R (otherwise)
PR

e

U_ =N(zAexp(-R/ p)—aq’ | R),

fot

where = 1s # of nearest neighbors, and « 1s Madelung

A x
constant. o = Z Q
i Py



dUmf

At equilibrium, =0, or R, exp(—R,/ p) = paq” | zA.
y - Nag'(, »p
rm'__RO _E O 0 & 06 00 060 0O

Evaluation of the Madelung constant

_I_
& Z ;) For one-dimensional NdCl, one have
R T R,

o 1 1 1 1
— =2 ———t+———+ |,
R R 2R 3R 4R

.IE IE I4

In(l+x)=x—+———+---. and a=2In2.
2 3 4
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Ewvjen’s Method

We will illustrate Evjen’s method? by considering a simple square lattice in
two dimensions with two atoms per unit cell, one at (0,0) and one at (%,% .
The crystal structure is illustrated in Figure 1.25. The calculation is carried

out as follows:
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1. One considers the charges associated with different shells where the first
shell 18 evervthing inside the first square, the second 15 evervthing ontside
the first but mside the second square, ete.

2. An ion on a face 12 considered to be half inside and halt ontside the square
defined bv that face; a corner atom 18 one quarter inside and three quarters
ontside.

3. The total Madelung constant 15 given by o = oy + a9 + g + - - -, where

¥ 5 is the contribution from the it shell.



As an example, let us evaluate the total charge on the first tew shells. The
first shell has four atoms on faces, all with the opposite charge to the atom
at the origin and four corner atoms all with the same charge as the atom at
the origin. Therefore the charge of shell number one 1s

1 1
th =4 [_—3] —4 [E:I — 1. (1.55)
Doing the same for the second shell gives
1 3 1 1 1
(Ja =4 |:§:|—:1|:E]—4 [E:I-I—Sligj—:ll:E]:ﬂ. (1.56)

Here the first two terms come from the remainder of the atoms on the out=ide
of the first square; the next three terms come from the atoms on the in=ide of
the second square. To get aq and oo we simply divide the individual charges
by their separations from the origin. This gives

i
.n-l-—~
o

, 4
= —2- _ ~ 1.203, (1.57)

td) 43 4y s 4
L2 4/ - 2/ -
(v = — — + + =~ (), 314. 1.5%
T V2 2 5 o8
This gives o =~ a1 + @ ~ 1.607. The readers should he able to evaluate s
tor themselves,
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The binding of
molecular hydrogen is
a covalent bond. The
strongest binding
occurs when the spins
of the two electrons are
antiparallel because of
the Pauli contribution
to the repulsion is
reduced in antiparallel
spins. The spin-
dependent coulomb
energy is called the
exchange interaction.
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Vibrations of crystals with monatomic basis

Our goal 1s to find the frequency of an elastic wave 1n terms
of the wavevector that describes the wave and in terms of
the elastic constants.

Longitudinal and transverse waves. When a wave
propagates along one of the high symmetry directions
([100], [110], and [111]), entire planes of atoms move

in phase with displacement either parallel or perpendicular

to the direction of the wavevector.



Longitudinal phonon
wave
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Normal modes of a 1-D monatomic Bravias Lattice

(n-4)a n-3)a (n-2)a (n-1)a na m+1)a (n+2)a (n+3)a (n+4)a

o o G - @ o & -3 e ®

Consider a set of i1ons M separated by a distance a,

R =na for integral n. Let u(na) be the displacement.

Assuming only neighboring ions interact, we have

g = é(fz [u(na) —u([n+ l]a)]z,

Newton's second law F' = Ma or

M du(}za) - al]fmrm _
dt- ou(na)

—C [2zz(na) —u([n=1]a)—u([n+ l]a)]



If the chain of 10ns has number, NV, and N 1s large, we can join the
two remote ends of the chain back together with

u([N +1la) =u(a);u(0) =u(Na).

This 1s called Born-von Karman (periodic) boundary condition.
We seek solution of the form: u(na.t) o« expli(kna — ot)].

The periodic condition requires exp(ikNa) =1,

. 27Tn
or kNa =27mn, where n 1s integer, or kK = ——

Na
There are just NV values of & yield distinct solutions.



) i kma—ax) —ikn 10 i ma—ax) _p i kma—at)
More :—C[Z—e e ]e =—-2C(1-coska)e ﬁ
Therefore we have

(k) = \/ 2Clzcoska) 5 1€ i L ka
M M 2

The solutions describing the actual 1onic displacements are given by
cos(kna — (s)r)}

sin(kna — or)

u(na,t) o« {

Since @ 1s an even founction of k. solutions determined by & and
—( k) are 1dentical to those determined by — k& and (k) = o(—k).
There are N distinct values of &, each with a unique frequency @(k),

so we have 2N independent solutions.



First Brillouin zone
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First Brillouin mne—ﬂ-_j
The boundary of the first Brillouin zone lies at k =*7/a. The

slope of @ versus £ 1s zero at the zone boundary:
do’/dk=2Ca/M)sinka =0.

An arbitrary motion of the chains 1s determined by specifying the
N 1nitial positions and N 1nitial velocities of the 1ons. Since these
can always be fit with a linear combination of the 2V independent

solutions., we have found a complete solution to the problem.



T~ SCAVAVAVAN

At the boundaries k___ ==+ /a of the first Brillouin zone

the solution u(na,t) = uexp(ikna) =u(-1)".
This 1s a standing wave: alternate atoms oscillate in opposite

Group velocity

The transmition velocity of a wave packet 1s the group velocity, given

as v, =d®/dk. This 1s the velocity of energy propagation in the

. 1 o
medium. We find: v, = (Ca* /| M)H"? cosgka. This 1s zero at the

edge of the zone where &k = 7 /a. The standing wave.
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When ka <1 we have coska =1- 3 (ka)~, so that the dispersion

relation becomes o’ = (C/M)K a".
It we drop the assumption that only nearest neighbors interact, very
little changes. The functional dependence of @ on k£ becomes more

complex, but we continue to find N normal modes for the NV allowed

values of k. At small k, o(k) = k.



Normal modes of two atoms per primitive basis

—- a—d | —| d |~ — a b—
. X e X o X e X e X o X @ X e X e
na (n+a (n+2a (n+3a (m+ 4 (n+5u (n+6) n+7a

T000 VA TR0 VA TOODT WA D000 % VWA 00V A D000 ¥ VAS TR R AV ST W/
T G-spring
W\  K-spring

The harmonic potential energy 1s:
Ut — éKZ[ul (na) —z;z(na)]z + % (?Z:_[u2 (na)—u,([n+ 1].{:;)]2

where u,(na) 1s the displacement around »a, u, (na) the displacement
around na+d.Iltd <a/2,.K > G.

du,(na) ol J harm

M % S na) =—K[u,(na)—u,(na)|—Gu,(na)—u,([n—1]a)]
duy(na) - eUuM™™ B B B |
M i onoma) K|[u,(na)—u,(na)|—Gu,(na)—u,([n+1]a)]



We seek solution

u,(na) = g, expli(kna — ot)]
u,(na) = ¢, expli(kna — ot)]
Here &, and &, are constants that determines the relative amplitude
and phase of the vibration of the 1ons within each primitive cell.
[Mo® — (K +G)]e, + (K +Ge ™ )e, =0

(M@ —(K+G)]e, + (K +Ge ™ )g, =0

This pair of homogeneous equations will have a solution, 1f the
determinant of the coefficients vanishes:

(Mo® —(K+G)—|K+Ge™ =0

K+G

. , 1 —
Two solutions: @ = - v \f K*+G*+2KGcoska

. & _ K+Ge™
with —=F———
K+Ge™ |

&,




For each of the NV values of & there are thus two solutions,
leading to a total of 2NV normal modes. The two @ vs & curves
are two branches of the dispersion relation. Acoustic and optical

branches.
Dai/PHYS 342/555 Spring 2012 Chapter 2-37



L-'Illl‘l!l. ------------ v
— — i
R s - =

Case | k< 7/a Here coska =1—(ka)* /2, and

® = \/2(}; t6) O(ka)’
M

KG .
M = ka When I 1s very small, &,=F ¢,.
2M(K+G)



“igure 22.12.

Case2 k=rm/a

’ZK
M = ﬂ,gl :—82

2G
@ = v & =6&,
When & = 7/ a, the motion in neighboring cells are 180 degrees

out of phase, and therefore the two solutions are




Case 3 K> G To leading order in G/ K we have

f9:1’?§[1+0(6 K)l. & = —¢,

/2G
@ = |5111§]\,a|[1+0((‘ K)] £ XE,

The c:}ptlcal branch now has a frequency that 1s independent of £,
to leading order in G/ K, and equal to the vibrational frequency
of a single diatomic molecule composed of two mass M 1ons
connected by a spring K. The acoustic branch 1s just that for a

linear chain of atoms of mass 2/ coupled by the weak spring G.



An acoustic mode 1s one 1n which all 1ons within a primitive cell
move essentially in phase and the dynamics are dominated by the
interaction between cells; an optical mode 1s one 1n which the

ions within each primitive cell are executing molecular vibratory mode.

Cased4d K=G

In this case we are really dealing with a monatomic Bravais lattice

of lattice constant a/ 2.
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