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Under quantum theory and the Pauli exclusion principle, we consider

N noninteracting electrons confined to a volume V' (L'). If the wave function
of single electron is (), then
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Applying boundary condition
v(x,v.z+L)y=w(x,y,2).w(x,y+L,z)=w(x,),2);
w(x+L,y,z+L)=w(x,y,z). The solutions are

1 hk*

W (1) = Weh? T e(k) = o Note the probability of

2
finding the electron somewhere in the volume is 1 = j dr |y ()| .




Note that . (7) 1s an eigenstate of the momentum operator,

ioF i ioF
an electron in the level . () has a momentum p = hk and a
velocity v = p/m = hk / m, where L =27 /k.
Periodic boundary condition requires
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Thus 1n a 3-D k-space, the allowed wavevectors are those along
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the three axes given integer mutiples of -



()

-
-

h?
2m

Energy in units

———Energy levels
— Wavefunctions,
relative scale

o8]

Quantum number, n

N
=



To calculate the allowed states in a region of A-space volume €2,

Q  Qr
Q2z/LY (2r)
volume of k-space (known as the k-space density of levels) 1s

V
(27)’
the N-electron ground state by placing electrons into the allowed
one-¢lectron levels. Pauli exclusion principle allows each wavevector

to have 2 electronic levels with spins up and down.

or the number of allowed k-values per unit

. Because the electrons are noninteracting we can built up



Since the energy of a one-clectron level 1s directly proportional

to k£, when N is enormous the occupied region will be indistinguishable
from a sphere. The radius of this sphere is called k£,. (F for Fermi),

and its volume Q is 47k, /3. The # of allowed k within the sphere is:

ANV ik .
&l [ - ) = —=V. Since each allowed k-value leads to two
3 87 61

k) k)
F2 V — F

67T 37’

one-clectron levels, we must have N =2 V.

If electron density is n= N/V, then we have n =k, /377



The sphere of radius k- containing the occupied one eletron levels
is called the Fermi sphere.
The Surface of the Fermi sphere, which separate the occupied form

the unoccupied levels is called the Fermi surface.

-, 1/3
37°N .
d ] of the occupied

The momentum p, = hk, =h{

one-clectron levels of highest energy 1s the Fermi momentum.

&, =hk;./2m=

& {3,@31\?

- J is the Fermi energy;

2m\

. 1/3
sl 3N | . . :
V.. = Pl M= (m ){ ﬁV ] i1s the Ferm1 velocity.
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Density of orbitals, relative scale

To find an expression for the
number of allowed electron states

per unit energy, D(g), we use

3/2
A7 V (Zm&‘) and

372\ A
N v (2m\"?
Dis)= = g ",
() de 2x° [ h’ )

3
]nN:ElnSJrconst;

dN 3d dN 3N
—:——g, where D(¢) = ——,
N 2 ¢ de 2¢
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Table 1 Calculated free electron Fermi surface parameters for metals at room temperature
(Except for Na, K, Rb, Cs at 5 K and Li at 78 K)

P T R T i - S e N N S~ T T e T e S R T L, S RS B

Fermi
Electron Radius* Fermi Fermi Fermi temperature
concentration, parameter wavevector, velocity, energy, Te = eplky,
Valeney Metal inem™? r, inem™! inem st in eV in deg K
e g i T " T R T i e T R R e AN el v e e il Py A L By T A W e W T T T . - P
1 Li 4.70 x 10% 3.25 1.11 x 10° 1.29 x 10 4.72 5.48 x 10
Na 2.65 3.93 0.92 1.07 3.23 3.75
K 1.40 4.86 0.75 0.56 2.12 2.46
Rb 1.15 5.20 0.70 0.81 1.85 2.15
Cs 0.91 5.63 0.64 0.75 1.58 1.83
Cu 8.45 2.67 1.36 1.57 7.00 8.12
Ag 5.85 3.02 1.20 1.39 548 6.36
Au 5.90 3.01 1.20 1.39 5.51 6.39
2 Be 24.2 1.88 1.93 2.23 14.14 16.41
Mg 8.60 2.65 1.37 1.58 7.13 8.27
Ca 4.60 3.27 1.11 1.28 4.68 5.43
Sr 3.56 3.56 1.02 1.18 3.95 4.58
Ba 3.20 3.69 0.98 1.13 3.65 4.24
Zn 13.10 2.31 1.57 1.582 9.39 10.90
Cd 9.28 2.59 1.40 1.62 7.46 8.66
3 Al 18.06 2.07 1.75 2.02 11.63 13.49
Ga 15.30 2.19 1.65 1.91 10.35 12.01
In 11.49 2.41 1.50 1.74 8.60 9.98
4 Pb 13.20 2.30 1.57 1.82 9.37 10.87
Sn(w) 14.48 2.23 1.62 1.88 10.03 11.64

T n-a:me’-Mfaavm-m“u T T T T e T e e A R Ty _
*“The dimensionless radius parameter is defined as r, = rofay, where ay, is the first Bohr radius and ry is the radius of a sphere that contains one electron.
LDadl/lFHAYO 344£/000 SPIINg £ZUls crapler o-y



Effect of temperature on the Fermi-Dirac distribution

“—Jm Samp~| ™ *
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eky, in onits of 10° K
f(e)= 1 4 1s chemical potential
exp[(e — u)/ k,T]+1 "’
f(&)=1/2 when ¢ = L.
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3.1 Drude Model

The most important characteristic of a metal is its high electrical conductivity.
Around 1900, shortly after J. J. Thompson's discovery of the electron, people
became interested in understanding more about the mechanism of metallie
conduction. The first work by E. Riecke In 1898 was quickly superseded by
that of Drude in 1900. Drude! proposed an exceedingly simple model that ex-
plained a well-known empirical law, the Wiedermann-—Franz law (1853). This
law stated that at a given temperature the ratio of the thermal conductivity
to the electrical conduetivity was the same for all metals, The assumptions of
the Drude model are:

(i) a metal contains free electrons which form an electron gas.

(ii) the electrons have some average thermal energy {%m.-v%}, but they pursue
random motions through the metal so that (vr) = 0 even though (23 #
0. The random motions result from collisions with the ions.

(iii) because the ions have a very large mass, they are essentially immovable.



Parabolic paths

Electric Field
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Microscopic Model of Waves Iin
Metals

= What will we need to include in a
microscopic model of a metal?

m Simplest model of electrons in a metal is the

Drucde or free electron model

»Metal behaves like an empty box containing
a free electron gas

»The free electron gas consists of the outer
conduction electrons - a monovalent metal
such as copper contributes one electron
per atom




Drude Model of Metals

= What will we need to include in a
microscopic model of a metal?

m Simplest model of electrons in a metal is the
Drude or free electron model

»Between collisions, other interactions are
heglected

»The mean free time between collisions is t
and is independent of the electron's
position or velocity




Drude Model of Metals

= What effect does an applied electric field
have on the motions of the electrons?

»There are also interactions with the lattice
ions (scattering)which leads to resistance

»This drag force means that electrons do not
accelerate indefinitely in the fieldan electric
field E




Drude Model of Metals

mWhat effect does an applied electric field
have on the motions of the electrons?

»AS a consequence of these opposing forces
the electrons reach a final drift velocity v;

»In which case the forces add to zero




Drude Model of Metals

= Rearrangement gives the coefficent gamma
m | is known as the mobility of the electron




Drude Model of Metals

m The velocity can be determined from the
equation of motion




Drude Model of Metals

m YWe define a relaxationtime




Drude Model of Metals

m Current density J (M, = number of free electrons)




5 Criticisms of Drude Model

1. If <2m v3) = %LBT then the electronic contribution to €, had to be
C, = Eh kp = 5H. This is half as big as the lattice contribution and was
simply not {Jbserved.

2. Experimentally o varies as 771, This implies that ngr oc 77! since e
and e are constants, In Drude’s picture, the mean free path [ ~ vpr was
thought to be of the order of the atomic spacing and therefore independent
of T'. Since v o T2 this would imply that 7 o T~%2 and, to satisty
ngT ox T_l_, that g ~ T-Y2, This did not make ALY sense,

2

3.6 Lorentz Theory

Since Drude’s simple model gave some results that agree fairly well with ex-
periment, Lorentz® decided to use the full apparatus of kinetic theory to inves-
tigate the model more carefully. He did not succeed in improving on Drude’s
model, but he did make use of the Boltzmann distribution function and Boltz-
mann equation which we would like to describe.,
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1 Figure 8.5.4: Two Fermions
cannot occupy the same

Figure ~ 8.5.3:  Switching state at the same time.
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Heat capacity of the electron gas

In a gas of free and independent electrons, the one electron levels
are specified by wavevector k and spin quantum # s with
e(k)=nk*/2m

As I' — 0, we have %123 f =1, for E(E] < 1 and zero for E(E) > U

( Gt ] U
CF = - M=
ol ), V
=23 (k) f(e(k)). As V — =, we have
k

dk - -
- &(k) f(e(k))
ST

= lim %z; e(k) f(e(k)) = zj

dk

1 (e(k)).

If the electron density n =N /V, n = I
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At low temperature k,7 < &, the increase in energy when heated

to a temperature 7 1s AU = J‘III(?TED g)ef(e) —J‘:' deD(e)e.
(‘[ +J )daD(a)z—:Ff(E) I deD(e)e,.
= [ deD(e)e—&;)f () +[ " deD(e)(er — o)1~ f(£)]

dU
CTEI —

—J. deD(e)(e - EF) f EF)I de(e—é&; :ﬁ

(ff_E—EF. expl(e—¢ F]H’]
dT 2 {exp[(e—s&;)/7]+1}

Detme x=(&—¢.)/7, we have

- @ e 1 )
C, = A'J‘;TD(EF).[_EF dx EEhE 72D(e, )T

i)




Experimental heat capacity of metals

At sufficient low temperatures, C, = y7 + AT°. Where y is the
Sommerfeld parameter. The ratio of the observed to the free

electron values of the electronic heat capacity 1s related to
thermal effective mass as:

m, _ y(observed)

m y(free)
3.0
s 1.-...n-l""
= 57 L

% 2 CiIT=208+2 j :;'_.....--"'
E L Potassium ; .--'"""ﬂ'
E 25 __.-.l""""
o I 2 T

2.0 l :

0 0.1 0.2 0.3

T in K*



5.2.5 Fermi Surfaces

The energy bands of free electron metals are £(k) = hi’k*/2m_ except near to symmetry
points in the BZ. At those points the energy bands developed band gaps. This behavior is
found in one, two, and three dimensions. The energy bands are parabolic except near to
the edges and other symmetry points.

The Fermi surface is the line of points at zero temperature that divides the occupied
from the empty electron states.

« In one dimension, the free electron Fermi surface is two points in the BZ, at £k, where
n = 2k. /7.

« In two dimensions, the free electron Fermi surface is a circle of radius k,, where n, =
kij2m.

« In three dimensions, the free electron Fermi surface is a sphere of radius k., where n, =
k37



Figure 5.1 shows an example in two dimensions. It shows the BZ of a square lattice.
The circle is Fermi surface with two electrons per unit cell (n, = 2/a’). Write the density
of electrons on the sq lattice asn, = n/a’, where n, is the density, and # is the number of
valence electrons per atom. The Fermi wave vector is

k= /27n, = ”zf” (5.55)

Some values are shown in table 5.2. The edge of the BZ is at G,/2 = 7#/a. If n =1, the
circle is entirely within the first BZ since 2.507 < 77, and the material is a conductor.

-
[




Electrical conductivity and Ohm'’s law

Considering Newton's second law, we have

ﬁ:mﬁ:ﬁdk :—E(E+l*:~:§)
dt dt c

The displacement of the Fermi sphere, 5k = —eEt/ .

If collision time is 7, the incremental velocity is ¥ = —eE7/ m.
In a constant electric field £ and » electrons per volume, the
electric current density is j = ngv =ne’Er/m=cE.

The electrical conductivity o =ne’z/ m.
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Experimental electrical resistivity of metals and
Umklapp scattering

Dai/PHYS 342/555 Spring 2012 Chapter 5-32



Motion in magnetic fields

The Lorentz force on an electron 1s

. dv _ dk _ 1. <
F=m—=h—=—e(E+—vxB)
dt dt c
For a static magnetic field B lie along the = axis, we have
d 1 B
m—+—)v_=—e(EL_+—v,
dt r) ) (£, c 2
d 1 B
m—+—)v, =—e(E, ——v,
(n‘r r (& c )
d 1
m(—+—)v. =—ekE_
dt v ~ ]
In the steady state 1n a static electric field. the drift velocity 1s
T T T
V.= —E—EI —@.TV 1V, = —E—EJ: +@OTV Vv, = —E—E___

1 m m
@, = eB/mc 1s the cyclotron frequency.



Hall effect

prgegoninapei At

J

(a) ebBr
E =—0tE =—F
mc

perpendicular
to & uxis;

drift velacity
just starting up.

E
R= J’B is called Hall coefficient
Jx

Section
perpendicular
to # axis;
drift velocity
in steady state,
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3.16 Hall Effect and Magnetoresistance

If we apply an electric field E in the x-direction, the Lorentz force, —<v = B
canses a drift velocity in the y-direction. If w = 0 charge will accummlate on
the surfaces normal to the y-direction until a field E, bulds up that exactly
cancels the Lorentz force. (See Figure 3.5.) The condition j, = 0 gives

.J{y == 'ﬂ'mmEy — *'-TmyE:n = D,

-evx B causes drift L E



Thermal conductivity

The thermal conductivity coefficient K of a solid 1s defined as,

Jo=—K g where j,; 1s the flux of thermal energy, and
X
x 1s distance. From the kinetic theory of gases we find
1 1

K= x Cvl = 5 Cv’r, where C is the heat capacity per volume,

v 1s the average particle velocity, and / 1s the mean free

path of a particle between collisions, 7" is the phonon

collision rate.



Thermal conductivity of metals
Wiedemann-Franz law

Thermal conductivity for a Fermu gas

1 T nkiT mnkiTr
K =—Cvl=—"—."8_.y_.]= B
el -~ - 2 F -
3 3 mv; 3m

The Wiedemann-Franz law states that for metals at not
too low temperatures the ratio of the thermal conductivity
to the electrical conductivity 1s directly proportional to the

temperature, independent of the particular metal.

K, m'nk;Tt/3m =’ [’1"3

el __ _

]TELT.

2
o ne t/m 31 e

[orenz number L =2.45x107° Wa‘rt-u:rhmfde;g2



Table 5 Experimental Lorenz numbers

M

L % 10° watt-ohm/deg® L x 10* watt-ohm/deg”

Metal 0°C 100°C Metal 0*C 100°C
Ag 2.31 2.37 Pb 2.47 ggg
Au 2.35 2.40 Pt 2.51 :
Cd 2.42 2.43 Sn 2.52 2.49
Cu 2.23 2.33 W 3.04 3.£
Mo 2.61 2.79 Zn 2.31 %)

M
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