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Our goal 1s to find the frequency of an elastic wave in terms
of the wavevector that describes the wave and in terms of
the elastic constants.

Longitudinal and transverse waves. When a wave
propagates along one of the high symmetry directions
([100], [110]. and [111]). entire planes of atoms move

in phase with displacement either parallel or perpendicular

to the direction of the wavevector.
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Longitudinal phonon wave
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Normal modes of a 1-D monatomic Bravias Lattice

in-4)a (m-3)a (w-2)a (n-1)a na in+1da (n+2)a in+3)a (n+4)a

o L L 13

Consider a set of 1ons M separated by a distance a.

R = na for integral n. Let u(na) be the displacement.

Assuming only neighboring ions interact, we have

U = %CZ [H(ﬁrﬂ} —u([n+ 1]{1)]2,

Newton's second law F = Ma or

du(nn) oy
dt’ r::u(nc?)

M——= =—C [23{(}}{?) —u([n—1la)—u([n+ l]n}]



If the chain of 1ons has number, N, and N is large, we can join the
two remote ends of the chain back together with

u([N +1]a) =u(a). u(0)=u(Na).

This is called Bormn-von Karman (periodic) boundary condition.
We seek solution of the form: u(na.r) o expli(fna — ar)].

The peniodic condition requires exp(ikNa) =1,

2n

Na
There are just NV values of & yield distinct solutions.

or kNa=2an. where n 15 integer, or k =
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Meao'e —_C [2—3 ika —e”"’“}e

i Fng—eat) kna—at )

=-2C(l—cos ﬂ’f’.’)t—‘.‘!f{-

Therefore we have

a(k) = JZ{L. (—coska) _ 2 [ = | sin lﬂ’ﬂ

M M 2
The solutions describing the actual 1onic displacements are given by

-

u(na.t) %

"-

cos(kna — ar)
s kna — or) l}

Since @ 1s an even founction of . solutions determined by & and
—@( ) are 1dentical to those determuned by — & and @(f) = &(—Fk).
There are N distinct values of &, each with a unique frequency @(k).

s0 we have 2N imndependent solutions.



First Brillouin zone
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The boundary of the first Brillouin zone lies at k =+7/a. The

slope of @ versus £ 1s zero at the zone boundary:

de’ | dk =(2Ca/M)sinka =0.

An arbitrary motion of the chains 1s determined by specifying the
N muitial positions and N mutial velocities of the 1ons. Since these
can always be fit with a linear combination of the 2N imndependent

solutions, we have found a complete solution to the problem.
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Fig. 2.1. Linear chain of N identical atoms of mass M
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2.4 Optical Modes
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Normal modes of two atoms per primitive basis

—~l a-d |- — d - — a

. X o» X » X » X » X . X = X * X ®
na int+la {n+ 2w in+3w (m+ 4 (n+ 5w (n+6la n+Na
< 00000 WA TONU % VWS TOD0D WA S TROTT W AAS TR WA T WA S TR A S T e
DI G-spring
WA A-spring

The harmonic potential energy 1s:
1 > 1 2
harm
usr = EKZﬂ: [ul (na)—u, (}m)] + > G;[“z (na)—u,([n+ l]r:?)]

where 1, (na) 1s the displacement around na. i, (na) the displacement
around na+d. Ifd <a/2.K = G.
duy(na)y  oU™™

dt’ Cuy (na)
di,(na)y U™

M = —K [u,(na) —u,(na)| - G [u,(na) —u,([n—1]a)]

dr’ éu, (na)

M =-K [uz (na)—u, (}m)] -G [H: (na)—u, ([n+ 1]{:)]



We seek solution

uy(na) = g expli(fma — ot)]

u,(na) = &, expli(fma — or)]

Here g, and &, are constants that determines the relative amplitude
and phase of the vibration of the ions within each primitive cell.
[Mo® —(K+G)e,+(K+Ge™)e, =0

Mo —(K+G)le, +(K+Ge™)g, =0

This pair of homogeneous equations will have a solution. if the
determunant of the coefficients vanishes:

(Mo —(K+G)'—|K+Ge™ |’=0

Two solutions: & = K+G + I JK2 + G +2KG coska
M M
with A T K+Ge™
£ | K+ Ge™ |

2



For each of the N values of & there are thus two solutions.
leading to a total of 2NV normal modes. The two @ vs k curves
are two branches of the dispersion relation. Acoustic and optical
branches.
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Case 3 K> G To leading order in G/ K we have
2K

—[1+0(G/K)).& ~—;

,, |5111—£.:?|[1+O{G K)|. g =&,

The Dp'[lﬂal branch now has a frequency that i1s independent of k.
to leading order in G/ K. and equal to the vibrational frequency
of a single diatomic molecule composed of two mass M 1ons
connected by a spring K. The acoustic branch 1s just that for a
linear chain of atoms of mass 2M coupled by the weak spring G.



An acoustic mode 1s one 1n which all 1ons within a primitive cell
move essentially in phase and the dynamics are dominated by the
interaction between cells: an optical mode 1s one in which the

1ons within each primitive cell are executing molecular vibratory mode.
Cased4 K=G

In this case we are really dealing with a monatomic Bravais lattice
of lattice constant a /2.



Acoustical mode



Consider a longitudinal wave

u_ =ucos(or—sKa)

which propagates in a monoatomic linear lattice of atoms of mass
M . spacing a. and nearest neighbor interaction C.

(a) Show that the total energy of the wave 1s
1 | >
E==—M) (du_/dt)y+=C)» (u_—u_,)"
2 4 ; ( 5 ) 2 g ( 5 5—1)

where s runs over all atoms.

(b) By substitution of u, in this expression, show that the time-average total energy
per atom is

* Mou® + 5 C(1 — cos Ka)u* = 5 Mw™u® |

where in the last step we have used the dispersion relation (9) for this problem.



Quantization of elastic waves

The energy of a lattice vibration 1s quantized and called a phonon. Thermal
vibrations in crystals are thermally excited phonons with energy

| . . .
E=(n +§)ﬁ @ when the mode 1s excited to quantum # ».

We can quantize the mean square phonon amplitude.

i = U, COS kx COS @t
L ... 1 cu : -
The kinetic energy density 1s 5 p(—)°. where p is the mass density. In
ot

a crystal of volume ¥, the average Kinetic energy 1s:

| - o 1 5 5 1 |
— pV o (coskxsinmt)” =— pVou, =—(n+—-)ho.
5 P . 2 £ 0= ,.J)

—

@ should be positive



Phonon momentum

A phonon of wavevector &£ will interact with photons. neutrons &

electrons as if it has momentum #4. Howver. a phonon does not
carry physical momentum.

N
dul—e™"
b

Physical moment: p=M(d/ drjz,n exp(ikna) =M P
rl-e
Note that periodic condition requires ™"

Atk=0. p=MN(du/dt).

=1. this means p =0.

The crystal momentum. If the scattering of the phonon is inelastic,

—_

with creation of a phonon of wavevector /. then
ke+k=Fk+Q



Inelastic scattering of neutrons by phonons

The kinetic energy of the incident neutron is p* /2M,, where M,
1s the mass of the neutron. The momentum of neutron is given by
p =hk =h2x/A. The conservation of energy requires

(ile)’ 12M,, = (fik,)* | 2M, + hoo,

where 7fie 1s the energy of the phonon created (+) or absorbed
(-) 1n the process.
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Triple Axis Spectrometer
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Consider the normal modes of a linear chain 1n which the force
constants between nearest-neighbor atoms are alternately

C' and 10C. Let the masses be equal, and let the nearest-
neighbor separation be /2. Find @(K) at K =0 and

K =7 /a. Sketch in the dispersion relation by eve.



Phonons and thermal properties

In quantum theory of specific heat, the total thermal energy of the

phonons can be written as the sum of the energies over all phonon
modes: U= > (n, ) ho, .
k p

Here (n, ,) denotes the thermal equilibrium occupancy of phonons

of wavevector £ and polarization p. (n, ,) 1s given by the Planck
|
exp(hw/7)—-1
olU

The heat capacity 1s then defined as C), = 7)‘,.
C

distribution function: (», ,) =



catastrophe. Planck’s new idea was to assume that the possible energies of the oscillators were
quantized, i.e., that oscillators of frequency v could only have energy

£n = nhv n=0,1,2,...
where h was a new constant he introduced. Now known as Planck’s constant, it was determined
by fitting the theoretical curve to the experimental data. The average energy per oscillator was
calculated from the Maxwell-Boltzmann distribution:

2. €n e-en kT
n
> eekT

n

£ =

The denominator is called the partition function, and is often represented by Z. It is easily
evaluated by summing the geometric series:

o o
Z=3 ewkl =3 em=_1_ yhere x=1v
n=0 n=0 l-ex kT
The numerator can then be found from the denominator:
> nhve™ =hv [ dz) _ h"f"xz
n=0 o dx (1 - E"x}

and the average energy per oscillator is seen to be

hv  _ hv

T T ex_1  eMkT_|




Planck distribution function:

Consider a set of identical harmonic oscillators in thermal equilibrium.

. . 1 L
The harmonic oscillator has an energy of (n+ 5)7?0). Thus the fraction

of the total number of oscillators in the nth quantum state 1s

N,  exp(-nho/rt)
Z N, Zexp(—sh @/ T)
5=0 5=0

The average excitation quantum # of an oscillator 1s:

D sexp(-nho/t) ]
- Y exp(=she/7) exp(ho/7)-1

(1)




Normal mode enumeration

The energy of a collection of oscillators 1n thermal equilibrium

ho
U= s . If crysal had D_(®)d ®» modes of
zgexp(h(u/r)—l Y »(@)

a given plarization p between @ and @+ d .

U = Zjda)Dp((u)

ho

, where D_(w) 1s the number
exp(haw/1)—1 !

of modes per unit frequency, called the density of modes or

density of states.
Assume x =ha/k,I. Then oU/oT




Density of states in 1D

e L o
0
a
Fixed.__ Tu;_ . ’* -I —Fixed
=0 1 2 .. e = 10
I S T
10¢ 10a 10a

K—

It each normal vibrational mode of polarization p has the
form of a standing wave, where

u, =u(0)exp(—io, ,1)sinska

The wavevector £ 1s restricted by the fixed-end boundary

conditions to the values




For 1D line there 1s one mode for each interval Ak = 7/ L. so that
the number of modes per unit range of Y 1s L/ 7 for k< 7/a and

0 for k& > 7/ a. The number of modes D(@)do 1n dw at @

D(o)do = L dk do. do/dk 1s the group velocity.
Tdo
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Density of states in three dimensions

In three dimensional lattice with N primitive cells side L,

periodic condition requires

expli(kx+ky+kz)]=expli(k (x+L)+k (y+L)+k (z+L1))]

Therefore £,k .k, =0; 27 .+ add I N7
L L L

There 1s one allowed value of & per volume (27 /LY ink

space or the total # of modes with wavevector less than &
N =(L/27) (4xk’ /3). The density of states for each

polarization 1s D(@)=dN /de = (VK> /2727 )dk | de)



Debye Model for density of states

In the Debye approximation. @ =vk. v 1s sound velocity.

Vw?

27y

D(@)=dN/do=VE> /22" )dk/do) =

T
If there are N primitive cells, the total # of acoustic modes 1s
N. The cutoff frequency oy, is @, =67 V' N/ V.

The cutoff wavevector in k space: k, = @, /v=(62"N/V)""

The thermal energy 1s

U= jde(m)(w(m) o = j do Vf ﬁ.m
e

275y e —1



[t the phonon velocity 1s independent of the polarization

p fr,rz % 44 3
[ = do 37 f)i { heo j I’Ix T J‘ d‘\,{ J

2 haal 3
0 2 v L et —1 27 e’ —1

where x=how/t=0/T

3
_ h( 67°N
the Debye temperature & 1s 6 = N [ ﬂ;r ]

kp

the total phonon energy U = 9Nk, T ( ] I d‘[ 1]
e* _

_ 31’7?2 o Uﬂreﬁm It
the heat capacity C), = “do {

27V kT 70 ("' —1)°

TY y'et
=9fo3}"() | Pax| —— |
g) % (-1
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Debye T° law
At low temperatures.

= 1 ® = - | T
L dx{EI_J:ZL e d‘szZ—d:—ﬁ

n=l1 n=1 H ].5

4
the heat capacity C,, = IZT’TMB (%1 .

. d)/l ‘ .
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Einstein models of the density of states

In the case of N oscillators of the same frequency @, 1n 1D,
the Einstein density of states 1s D(®) = No(@ — @,)
Nho )

Ei‘im!r _1

UzN(H)hm:[

- he
The heat capacity C;, = N (E) = Nk, ( hm) ©
oT /), (e

¢, (cal/mole-K)
s B W A& W ©

0 01020304 0506 07 0.8 0910
T/0
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1. Singularity in density of states. (a) From the dispersion relation derived in Chap-
ter 4 for a monatomic linear lattice of N' atoms with nearest-neighbor interactions,
show that the density of modes is

oN . 1
T

Diw) = (w2 —a®)2

where ,, is the maximum frequency. (b) Suppose that an optical phonon branch
has the form w(K) = wy;—AK®, near K =0 in three dimensions. Show that D(w) =
{L;"E.ﬂljfﬂwfﬁa‘rﬂ}{mu — @) for o < w; and D{w) = 0 for w > wy. Here the density
of modes is discontinuous.



Thermal conductivity

The thermal conductivity coefficient K of a solid 1s defined as.

. dT .
J, =—K b where j,, 1s the flux of thermal energy, and
X
x 1s distance. From the kinetic theory of gases we find

| | . .
K = 3 Cvl = 3 Cv'r, where C 1s the heat capacity per volume.

v 1s the average particle velocity. and 7 1s the mean free

path of a particle between collisions, 7~ is the phonon

collision rate.



Table 2 Phonon mean free paths

[Calculated from (44), taking v = 5 X 10° cm/sec as a representative sound velocity.
The €'s obtained in this way refer to umklapp processes. ]

Crystal .o C,inJem™K™! K,in Wem™'K™! ¢,in A

Quartz® 0 2.00 0.13 40

—190 0.55 0.50 540
Na(l 0 1.88 0.07 24
—-190 1.00 0.27 100

*Parallel to optic axis.
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We give the elementary kinetic theory which leads to (42). The flux of par-
ticles in the x direction is 3n{|v,|), where n is the concentration of molecules;
in equilibrium there is a flux of equal magnitude in the opposite direction. The
(- ) denote average value.

If ¢ is the heat capacity of a particle, then in moving from a region at local
temperature T + AT to a region at local temperature T a particle will give up
energy ¢ AT. Now AT between the ends of a free path of the particle is given by

dT dT
AT =22 ¢ =G~
T dxf I v, T

where 7 is the average time between collisions.
The net flux of energy (from both senses of the particle flux) is therefore

dT dT

= 2 e - ] 2 ]
Ju n{v:)er T sn{v™)er = (43)
If, as for phonons, v is constant, we may write (43) as
dT
—sCvf=— o (44)

with € = v7 and C = ne. Thus K = 3Cuf.



Case 1 (T > ©,) At high temperatures the total # of photons
present 1n the crystal 1s proportional to 7" because the thermal

equilibrium phonon occupation # reduced to:
haolksT
e 1]

ho
Since a given phonon that contributes to the thermal current 1s

more likely to be scattered the more other phonons there are
present to do the scattering, we should expect the relaxation
time to decline with increasing temperature. Since at high
temperatures C), 1s temperature-independent, we should expect

the thermal conductivity to decline with increasing temperature.

K ~1/7T". where x 1s between 1 and 2.



Case 2 (T < ©,) At T, only phonons with energy comparable
or less than k,7 will have appreciable #. The only collisions
occuring with appreciable probability are those that conserve
the total crystal momentum exactly. Normal and Umbklapp
process: A normal process 1s a phonon collision in which the
total mitial and final crystal momenta are strictly equal; in an
umklapp process they differ by a nonzero reciprocal lattice

VeCtor.
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