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Fermi surfaces and metals


FThe Fermi surface is the surface of constant energy  in  space.

The electrical properties of the metal are determined by the shape
k


of the Fermi surface.
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Reduced zone scheme
'

' 'For a Bloch function written as ( ) ( ),  with '

outside the first Brillouin zone, we have ' .
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Periodic zone scheme

kThe energy  of a band is 
periodic function in reciprocal 



lattice: . This is known 
as the periodic zone scheme.

k k G 


  

as the periodic zone scheme.
In a simple cubic lattice, the 
dispersion has form:dispersion has form:

2 (cos
cos cos

k xk a
k k

     

 )cos cosy zk a k ).a
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Construction of Fermi surfaces
2The equation of the zone boundaries is 2 0 and isk G G  

 
The equation of the zone boundaries is 2 0 and is 

satisfied if  terminates on the plane normal to  at the 

k G G

k G

  
 


midpoint of .G
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Nearly Free electrons

The interaction of the electron with the periodic potential of
h l h b d ithe crystal causes energy gaps at the zone boundaries.

Almost always the Fermi surface will intersect zone boundaries
perpendicularly.
The crystal potential will round out sharp corners in the 
Fermi surfaces.
The total volume enclosed by the Fermi surface depends only
on the electron concentration. 
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Make a plot of the first two Brillouin zones of a primitive 
rectangular two-dimensional lattice with axes, , 3 .a b a
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Electron orbits, hole orbits, and open orbits

An electron on the Fermi surface will move in a curve on 
the Fermi surface because it is a surface of constant energythe Fermi surface, because it is a surface of constant energy. 
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Tight banding method for energy bands

Tight banding approximation deals with the case in which 
the ovelap of atomic wave functions is enough to requirethe ovelap of atomic wave functions is enough to require
corrections to the picture of isolated atoms, but not so 

h t d th t i d i ti i l tmuch as to render the atomic description irrelevant.
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Assuming that in the vicinity of each lattice point the fullAssuming that in the vicinity of each lattice point the full
Hamiltonian  can be approximated by  of a single 
atom located at the lattice point If is a bound level

atH H
 natom located at the lattice point. If  is a bound level

of  for an atom at the origatH


in, . ( ) 
ill b ll h d di t f th d

at n n n nH E r  


will be very small when  exceeds a distance of the order
of the lattice constant. 

r

To calculate the extreme case in which the crystal  differs
from ,  ( ),  where (at at

H
H H H U r U   

 ) contains allr
corrections to the atomic potential of the crystal. If 
satisfies ,  then it will also satisfy the crystal

n

at n n nH E


 

Schrodinger equation if ( ) vanishes wherever ( )
does not. To p

nU r r
 

reserve Bloch condition, we must have
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n

n

Each atomic level ( ) would yield  levels in the 

periodic potential, with wave function ( ),  for each

r N

r R



 




np p ( )

of the  sites  in the lattice.

( ) ( )ik R
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r e r R



 
 



 
n ( ) ( ),

The Bloch condition is satisfi

n
R

r e r R  
ed ( ) ( ).ik Rr R e r  

  The Bloch condition is satisfied ( ) ( ).
The energy bands have no difference from the energy of 

of the atomic level regardless of the value of

r R e r

E k

 


of the atomic level, ,  regardless of the value of .
Consider the general form of the wave function:

nE k

 




( ) (ik Rr e r  
  ). 

R
R

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If ( ) ( ) is nonzero but small,
( ) should be quite close to the atomic wave function ( ).

n

n

U r r
r r


 


 

 

( ) ( ). Then we have crystal Schrodinger equation
n

n n
n

r b r  


( ) ( ( )) ( ) ( ) ( )

Multip
atH r H U r r k r      

   

*ly by the atomic wave function ( ),  integratem r 

* * *

over all , consider

( ) ( ) ( ( )) ( ) ( ) ( ) ,m at at m m m

r

r H r dr H r r dr E r r dr        



        

  * *( ) ( ) ( ) ( ) ( ) ( ) .

C id i th th
m m mk E r r dr r U r r dr      

  
 

       

lit f th t i f tiConsidering the ortho
*

normality of the atomic wave function,

( ) ( )m n nmr r dr  
  
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W i i l i h d i hWe arrive at an eigenvalue equation that determines the 

coefficients ( ) and the Bloch energies ( ):nb k k
 

    *

0
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r U r r dr b   
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

0

) ( ) ( ) .

The first term contains integral of the form

ik R
n n

n R

r U r r R e dr b 
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 
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*

The first term contains integral of the form

( ) ( )m nr r R dr  
  

Our assumption of well-localized atomic levels mean that 
the above term is small compared to unity. 
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We assume that the integral in the third term is small, 
since they also contain the product of two atomic wavesince they also contain the product of two atomic wave 
functions centered at different sites. Finally, we assume 
that the second term on the right is small because we expectthat the second term on the right is small because we expect
the atomic wave functions to become small at distances 
large enough fo the periodic potential to deviate appreciablylarge enough fo the periodic potential to deviate appreciably
from the atomic one.

0Therefore, ( )  if  is  not smmk E b  all or vice versa.
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Application to an s-band arising form a single 
atomic s-levelatomic s-level 

If all the coefficient  are zero that for a single atomic -level, 

( ) ik R
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 
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Since is an -level, ( ) only depends on magnitude of
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Since  is an level, ( ) only depends on magnitude of 

 and ( ) ( ). Since ( ) ( ), ( ) ( ).
If we assume that only nearest-neighbor separations give

s r
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If we assume that only nearest-neighbor separations give 
appreciable overlap integrals, we have

( ) ( ) cosk E R k R  
  
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For FCC crystal, the 12 nearest neighbors of the origin are

( 1, 1,0), ( 1,0, 1), (0, 1, 1).a a aR       


( , , ), ( , , ), ( , , )
2 2 2

For ( , , ), ( , ), , , ; , ; , .
2x y z i j
ak k k k k R k k i j x y y z z x     

  

2
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Consider ( ) ( , , ) has full cubic symmetry,

( ) is the same constant for all 12 of the vectors

U r U x y z

R

  



( ) is the same constant for all 12 of the vectors.
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1 1cos cos ),  
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
 1 1
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Measuring the Fermi surfaceg

Fermi surface measurements require pure single crystal at low
temperat res and is freq entl perform in er strong magnetictemperatures and is frequently perform in very strong magnetic
fields. The shape of the Fermi surface is intimately involved 
in the transport coefficients of a metal as well as in the equilibriumin the transport coefficients of a metal as well as in the equilibrium
and optical properties. The most powerful method to deduce
the Fermi surface geometry is the de Haas van Alphen effectthe Fermi surface geometry is the de Haas-van Alphen effect.

/dM dH/ ,  
Landau accounted the 

ill ti i f

dM dH 

oscillations in free 
electron theory.
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 
The change in 1/  through a single
period of oscillation, 1/ ,  was

H
H

determined by:
1 2 1e   

where  is any extremal cross-section
e

e

H c A
A

  
  

area of the Fermi surface in a plane
normal to the magnetic field.
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Th d H Al h ff i i di iThe de Haas-van Alphen effect is an indication
of the failure of the semiclassical model. The 
f il i h th i l i l thfailure arises whenever the semiclassical theory
predicts closed orbits for the electron motion

j t d l di l t th fi ldprojected on a plane perpendicular to the field.
When this happens, the energies of motion 

di l t ti dHperpendicular to  are quantized.H
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Free electrons in a uniform magnetic fieldg

The orbital energy levels of an electron in a cubic box with sides
of length parallel to the - - and -axes are determined inL x y zof length  parallel to the , , and axes are determined in
the presence of a uniform magnetic field  along the -direction
by two

L x y z
H z

quantum numbers and :kby two

 
2

2

 quantum numbers,  and :

1( ) ,    .
2 2

z

z z c c

k

eHk k
m mc



      



2 2

 runs through all nonmagnetic integers, and  takes on the 
same values as in the absence of a magnetic field:

z

m mc
k

g
2 /  for any integral z zk n L n .

The energy of motion perpendicular to the field, which would
z

2 2 2

gy p p ,
be ( ) / 2  if no field were present, is quantized in

steps of ( / ) This is orbit quantization
x yk k m

eH mc 








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Semi-classical motion in a uniform magnetic field

In the semiclassical equation of motion:

1 ( ) ( ) 1k d k
 

  1 ( ) ( ) 1( ) ,   ( ) ( ) .

Electrons move along curves given by the intersection of 

k d kv k e v k H
dt ck


   


 




g g y
surfaces of constant energy with planes perpendicular
to the magnetic field.g

Dai/PHYS 342/555 Spring 2012 Chapter 2-32



Dai/PHYS 342/555 Spring 2012 Chapter 9-33



Dai/PHYS 342/555 Spring 2012 Chapter 3-34



Origin of the oscillatory phenomena

   
Most electronic properties of metals depend on the density of levels

   at the Fermi energy, . It follows that  will be singular 
whenever the value of  causes an extramal orbit on the Fermi surface

F Fg g
H
 

 
4

to satisfy the quantization condition ( + ) ( ).
1 2 1 . 1.34 10 / .

e FA A
e e K G

  
 

 

     
 


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