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Fermi surfaces and metals

The Fermi surface Is the surface of constant energy & In k space.
The electrical properties of the metal are determined by the shape
of the Fermi surface.



Reduced zone scheme
u,.(F), with k'
outside the first Brillouin zone, we have k =k '+ G.
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For a Bloch function written as ,.(F) = ¢'

W, (F)=

First Brillouin zone



Periodic zone scheme

The energy ¢, of a band Is
periodic function in reciprocal
lattice:e, =& . This is known
as the periodic zone scheme.

In a simple cubic lattice, the
dispersion has form:

g =—a—2y(cosk a+
cosk,a+cosk,a).
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Construction of Fermi surfaces
The equation of the zone boundaries is 2k -G +G? =0 and is

satisfied if k terminates on the plane normal to G at the
midpoint of G.
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Nearly Free electrons

The interaction of the electron with the periodic potential of
the crystal causes energy gaps at the zone boundaries.

Almost always the Fermi surface will intersect zone boundaries
perpendicularly.

The crystal potential will round out sharp corners in the

Fermi surfaces.

The total volume enclosed by the Fermi surface depends only
on the electron concentration.
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Make a plot of the first two Brillouin zones of a primitive
rectangular two-dimensional lattice with axes, a,b = 3a.



Electron orbits, hole orbits, and open orbits

An electron on the Fermi surface will move in a curve on

the Fermi surface, because it is a surface of constant energy.

Hole orbit

B out
of paper

Electron orbit

Dai/PHYS 342/555 Spring 2012

Chapter 9-12



Tight banding method for energy bands

Tight banding approximation deals with the case in which
the ovelap of atomic wave functions is enough to require
corrections to the picture of isolated atoms, but not so
much as to render the atomic description irrelevant.
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Assuming that in the vicinity of each lattice point the full
Hamiltonian H can be approximated by H,, of a single
atom located at the lattice point. If v is a bound level

of H_, for an atom at the origin, H_ v, =E w.. v ()

will be very small when I exceeds a distance of the order
of the lattice constant.

To calculate the extreme case in which the crystal H differs
fromH_, H=H_ +AU(r), where AU (r') contains all
corrections to the atomic potential of the crystal. If y,

at!?

satisfies H_ . = E v, then it will also satisfy the crystal
Schrodinger equation if AU (1) vanishes wherever ()
does not. To preserve Bloch condition, we must have



Each atomic level . () would yield N levels in the
periodic potential, with wave function . (¥ —R), for each
of the N sites R in the lattice.

v, (F) = "y, (F - R),
R

The Bloch condition is satisfied w (F + R) = e* Ry (F).
The energy bands have no difference from the energy of
of the atomic level, E_, regardless of the value of k.
Consider the general form of the wave function:

w(F) =) e“"4(F —R).
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If AU (F)w, () Is nonzero but small,
¢(r') should be quite close to the atomic wave function y (F).

P(r) = an% (r). Then we have crystal Schrodinger equation

Hy (F) = (H,, + AU (F)y (F) = e (K)w (F)
Multiply by the atomic wave function " (F), integrate
over all ¥, consider

[v (OH (F)dF = [ (H (1) w ()T =E, [, (M (7)dr,
(£() - E,) [wo (W (1)dF = [y, (NAU (P (F)dF.
Considering the orthonormality of the atomic wave function,

[y (O, (N)dF =5,



We arrive at an eigenvalue equation that determines the
coefficients b_ (k) and the Bloch energies &(k):

(0)—Ey )by = (k) - Em)Z(Z Jora O (7 F?)e“df}bn

R<0

+> ([ (DAU (P)y, (F)dr )b,

+Z(ZI W (MAU (M, (7 - Fi)e“drj b .

n R=0
The first term contains integral of the form

Jwo (P, (F=R)dF
Our assumption of well-localized atomic levels mean that
the above term is small compared to unity.



We assume that the integral in the third term is small,

since they also contain the product of two atomic wave
functions centered at different sites. Finally, we assume

that the second term on the right is small because we expect
the atomic wave functions to become small at distances
large enough fo the periodic potential to deviate appreciably
from the atomic one.

Therefore, ¢(k) = E, if b, Is not small or vice versa.



Application to an s-band arising form a single
atomic s-level

If all the coefficient b are zero that for a single atomic s-level,

\ + R)e R
g(k) = E, _'13 227/ ((ﬁ; —, where E; Is the energy of the
+ > a(R)e

atomic s-level and

B =~ AU(F)|g(7)|dF, a(R) = [ 4" (N)4(T - Ry,
7(R)==[ 4" (MAU (Mp(F - R)dr.

Since ¢ is an s-level, ¢(r) only depends on magnitude of
r and a(-R) = a(R). Since U (F) =U (-F), »(R) = »(-R).
If we assume that only nearest-neighbor separations give
appreciable overlap integrals, we have

e(k)=E,—B+> r(R)cosk R




1
E(k)=E,-p -y 2 peAT (5.41)
Pl
which may thus be written as
E(k)=E,— B — 2ycos ka. (5.42)

This is the expression we have been seeking. It gives band energy as a function of
k in terms of well-defined parameters which we can evaluate from our knowledge

of atomic energy and atomic orbitals.
Equation (5.42) may be rewritten more conveniently as

E(k) = E, + 4y sin (fzi) (5.43)

where

Ey=E,—p—2y. (5.44)
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Note also that the bandwidth, 4y, is proportional to the overlap integral.
This is reasonable, because, as we saw in Section 5.2, the greater the overlap the
stronger the interaction, and consequently the wider the band. .

When the electron is near the bottom of the band, where k is small, one may
make the approximation sin (ka/2) ~ ka/2, and hence

E(k} — E, = ya%k?, (5.45)

which is of the same form as the dispersion relation of a free electron. An electron
in that region of k-space behaves like a free electron with an effective mass

R 1
Wa, o T 46
m 2 > (5.46)



Note, however, that an electron near the top of the band shows unusual
behavior. If we define k' = n/a — k, and expand the energy E(k) near the

maximum point, using (5.43), we arrive at

EI

‘E{k*:l - Emn A T?krzi [5-47}

which shows that the electron behaves like a particle of negative effective mass

hi
m* = — —, .
o (5.48)
This, you recall, is in agreement with the results obtained on the basis of the NFE
model.



The above treatment can be extended to three dimensions in a straight-
forward manner. Thus for a sc lattice, the band energy is given by

E(k) = Ej + 4y [sin (k;) + sin (k;ﬂ) + smi(kf)]. (5.49)

where Ej is the energy at the bottom of the band, The energy contours for this
band, in the k — k, plane, are shown in Fig. 5.17(a), and the dispersion curves
along the [Il}ﬂ] and [ll 1] directions are shown in Fig. 5.17(b). The bottom of the
band is at the origin k = 0, and the electron there behaves as a free particle with an
effective mass given by (5.46). The top of the band is located at the corner of the
zone along the | 111] direction, that is, at [n/a, n/a, n/a]; the electron there has a
negative effective mass given by (5.48). The width of the band is equal to 12 7.



Vir/a 0 r/a
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Fig. 5.17 (a) Energy contours for an sc lattice in the tight-binding model. (b) Dispersion
curves along the [100] and [111] directions for an sc lattice in the TB model.



For FCC crystal, the 12 nearest neighbors of the origin are

R =%(J_rl,il,0), %(J_rl,O,il),%(O,il,il).

ForE:(kx,ky,kz),ﬁ-ﬁ:%(iki,ikj),i, =X V:V.2:2, %
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Consider AU (F) = AU (X, Y, 2) has full cubic symmetry,
7(R) is the same constant for all 12 of the vectors.

e(k)=E.-p —47/(cos1 k.a cosi k,a+ cosl k,a cosl k,a
2 2 2 2
+cos1 kzacos1 k.a),
2 2

7(R) = —I¢*(x, y, 2)AU (X, Y, 2)@(X —%a, y —%a, z)dr.



Measuring the Fermi surface

Fermi surface measurements require pure single crystal at low

temperatures and is frequently perform in very strong magnetic

fields. The shape of the Fermi surface is intimately involved

In the transport coefficients of a metal as well as in the equilibrium

and optical properties. The most powerful method to deduce

the Fermi surface geometry is the de Haas-van Alphen effect.
-M/H (X 10%)

y=dM /dH,

Landau accounted the

oscillations in free

electron theory.
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The change in 1/ H through a single
period of oscillation, A(1/H ), was
determined by:
A( 1 j: 2re 1

H ne A
where A, Is any extremal cross-section

area of the Fermi surface in a plane
normal to the magnetic field.




Constant-energy
surface

&(k)=8Ep

(4)

The de Haas-van Alphen effect is an indication
of the failure of the semiclassical model. The
failure arises whenever the semiclassical theory
predicts closed orbits for the electron motion
projected on a plane perpendicular to the field.
When this happens, the energies of motion
perpendicular to H are quantized.



Free electrons in a uniform magnetic field

The orbital energy levels of an electron in a cubic box with sides
of length L parallel to the x-, y-, and z-axes are determined in
the presence of a uniform magnetic field H along the z-direction
by two quantum numbers, v and K, :

g, (k,) :h—zkf +(v+1)ha)c, o, _e1
2m 2 mc

v runs through all nonmagnetic integers, and k, takes on the

same values as in the absence of a magnetic field:

k, =2zn, /L for any integral n,.

The energy of motion perpendicular to the field, which would

be 7 (k; +k;)/2m if no field were present, is quantized in

steps of 7w, (@, =eH /' mc). This is orbit quantization.



Semi-classical motion in a uniform magnetic field

In the semiclassical equation of motion:

10e(k) d(rk)
nook o dt
Electrons move along curves given by the intersection of

surfaces of constant energy with planes perpendicular
to the magnetic field.

v(K) =

(—e)lvaZ)x H.
C




The time taken to traverse the orbit between El and J_c; 1S:

I_I_rzdf_rzdk th dk  _hc 1 kzﬁ(g)dk
e ' \(0s/0k),| eH As*n

K04, ) hgc[ﬁA(E,kE)]
eH\| 0s | eH oe

o - (o _
aszé-a(k)z[a—;l-a(k):
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Levels of Bloch electrons in a uniform magnetic field

In free electron theory, a level of &, must have a quantum number v
whose order of magnitude 1s &,/ ha, = &, /[(eli/ mc)H |.
eh/mc=1.16x10" eV/G. Typically, &, is several eV, so quantum
number v will be of order 10°.

Energies at two adjacent levels 1s determined by /v. Let ¢,(k.) be

the energy of the vth allowed level at a given £ _.
(e,,(k)—¢,(k))=hv=h/T(¢, (k.).k.),

0A(e,) 2meH
(6,005 =, (h)) AAE) _ 2eH]
ce hc

Because we are interested 1n &, oforder €., ¢,,,(k.)—¢ (k) < ¢,.
A(s,.,)—A(s,)=2meH | hc=AA4
A(e, (k). k)= + AL)AA, where /A 1s independent of v.



Origin of the oscillatory phenomena

(a) (b) (©)

Most electronic properties of metals depend on the density of levels

at the Fermi energy, g (& ). It follows that g (& ) will be singular
whenever the value of H causes an extramal orbit on the Fermi surface

to satisfy the quantization condition (v+A4)AA = A (&;).
A( 1)—27’6 ! o1 _134x10*K/G.

H) nc A(s)  mek,



(c)

phen effect for a free electron gas in two dimen-
sions in a magnetic field. The filled orbitals of the Fermi sea in the ahsence of a magnetic field are
shaded in g and d. The energy levels in a magnetic field are shown in b, ¢, and e. In b the field has
a value B, such that the total energy of the electrons is the same as in the absence of a magnetic
tield: as many electrons have their energy raised as lowered by the orbital quantization in the mag-
netic field B,, When we increase the field to B, the total electron energy is increased, because the
uppermast electrons have their energy raised. In e for field B, the energy is again equal to that for
the field B = 0. The total energy is a minimum at points such as B,, Bs, B, . . . ., and a maximum
near points such as B,, B,, . . . .
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(a) (b)

Figure 24 (a) Allowed electron orbitals in two dimensions in absence of a magnetic field. (b) In a
magnetic field the points which represent the orbitals of free electrons may be viewed as re-
stricted to circles in the former k., plane. The successive circles correspond to successive values
of the quantum number n in the energy (n — 2)kw,. The area between successive circles is

(CGS) wAK®) = 2ak(Ak) = (2mrmif®) Ae = e — 2weBific |

The angular position of the points has no significance. The number of orbitals on a circle is con-
stant and is equal to the area between successive circles times the number of orbitals per unit area
in (a}, or (2weB/ic)(Li27)? = L*«B/2whe, neglecting electron spin.



B— 100/E —
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Figure 25 (a) The heavy line gives the number of particles in levels which are completely occu-
pied in a magnetic field B, for a two-dimensional system with N = 50 and p = 0.50. The shaded
area gives the number of particles in levels partially occupied. The value of s denotes the quantum
number of the highest level which is completely filled. Thus at B = 40 we have s = 2. the levels
n = 1andn = 2 are filled and there are 10 particles in the level n = 3. At B = 50 the level n = 3 is
empty. (b) The periodicity in 1/B is evident when the same points are plotted against 1/B,



Fermi Surface of Copper. The Fermi surface of copper (Fig. 29) is distinctly
nonspherical: eight necks make contact with the hexagonal faces of the first
Brillouin zone of the fee lattice. The electron concentration in a monovalent
metal with an fec structure is n = 4/a% there are four electrons in a cube of
volume a°. The radius of a free electron Fermi sphere is

ke = (37°n)"° = (127%a%)® = (4.90/a) | (38)

and the diameter is 9.80/q.

The shortest distance across the Brillouin zone (the distance between
hexagonal faces) is (2a/a)(3)? = 10.88/a, somewhat [arger than the diameter
of the free electron sphere. The sphere does not touch the zone boundary, but
we know that the presence of a zone boundary tends to lower the band energy
near the boundary. Thus it is plausible that the Fermi surface should neck out
to meet the closest (hexagonal) faces of the zone (Figs. 18 and 29),

The square faces of the zone are more distant. with separation 12.57/a,
and the Fermi surface does not neck out to meet these faces.



Figure 29 Fermi surface of copper, after Pippard. The
Brillouin zone of the fec structure is the truncated octa-
hedron derived in Chapter 2. The Fermi surface makes
contact with the boundary at the center of the hexagonal
faces of the zone, in the [111] directions in k space. Two
“belly” extremal orbits are shown, denoted by B; the
extremal “neck” orbit is denoted by N
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o, Magmetic
Figure 28 The orbits in the section AA’ are ex- '
tremal orbits: the cyclotron period is roughly con- e
stant over a reasonable section of the Fermi surface.
Other sections such as BB have orbits that vary in

period along the section.
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Brillouin zone, rectangular lattice. A two-dimensional metal has one atom of
valency one in a simple rectangular primitive cella = 2 A; b = 4 A. (a) Draw the
first Brillonin zone. Give its dimensions, in em ™', (b) Calculate the radius of the
free electron Fermi sphere, in em ™', (¢} Draw this sphere to scale on a drawing of
the first Brillouin zone. Make another sketch to show the first few periods of the
free electron band in the periodic zone scheme, for both the first and second en-
ergy bands. Assume there is a small energy gap at the zone boundary.



