Review, Jan 27, 2012
We showed,
$\sigma \cdot \mathbf{p} \psi_{A}=\frac{1}{c}\left(E-V(r)+m c^{2}\right) \psi_{B}$.
$\sigma \cdot \mathbf{p} \psi_{B}=\frac{1}{c}\left(E-V(r)-m c^{2}\right) \psi_{A}$
and used
$\boldsymbol{\sigma} \cdot \mathbf{p}=\frac{1}{r}(\sigma \cdot \hat{r})\left(-i \hbar r \frac{\partial}{\partial r}+i \sigma \cdot \mathbf{L}\right)$
$\psi_{A, B}=\frac{1}{r} \phi_{A, B}(r) \mathcal{Y}_{j, m, \ell_{A, B}}$
$\sigma \cdot \hat{r} \mathcal{Y}_{j, m, \ell=j \pm 1 / 2}=-\mathcal{Y}_{j, m, \ell=j \mp 1 / 2}$
$\sigma \cdot \mathbf{L} \mathcal{Y}_{j, m, \ell}=\frac{2}{\hbar} \mathbf{S} \cdot \mathbf{L} \mathcal{Y}_{j, m, \ell}=\frac{2}{\hbar}(j(j+1)-\ell(\ell+1)-3 / 4) \mathcal{Y}_{j, m, \ell}$
to obtain

$$
\begin{aligned}
\hbar c\left(\frac{d F}{d r}+\frac{\kappa}{r} F\right) & =\left(E-V(r)+m c^{2}\right) G \\
\hbar c\left(\frac{d G}{d r}-\frac{\kappa}{r} G\right) & =-\left(E-V(r)-m c^{2}\right) F
\end{aligned}
$$

Our task is to solve these coupled first order differential equations.

Solution

Use atomic units and rationalize variables
$\varepsilon=E / m c^{2} e^{2} / \hbar c=\alpha=$ fine structure constant, $c=\frac{1}{\alpha}$,
$\lambda=\frac{1}{\alpha \sqrt{1-\varepsilon^{2}}}, \rho=2 \lambda r$,

$$
\begin{aligned}
& \frac{d G}{d \rho}-\frac{\kappa}{\rho} G=\left(\frac{1}{2} \sqrt{\frac{1-\varepsilon}{1+\varepsilon}}-\frac{Z \alpha}{\rho}\right) F \\
& \frac{d F}{d \rho}+\frac{\kappa}{\rho} F=\left(\frac{1}{2} \sqrt{\frac{1+\varepsilon}{1-\varepsilon}}+\frac{Z \alpha}{\rho}\right) G
\end{aligned}
$$

$$
F=\sqrt{1+\varepsilon} e^{-\rho / 2}\left(\phi_{1}+\phi_{2}\right), G=\sqrt{1-\varepsilon} e^{-\rho / 2}\left(\phi_{1}-\phi_{2}\right)
$$

to get

$$
\begin{align*}
& \frac{d \phi_{1}}{d \rho}=\left(1-\frac{\alpha \varepsilon}{\sqrt{1-\varepsilon^{2}} \frac{Z}{\rho}}\right) \phi_{1}+\left(-\frac{\kappa}{\rho}-\frac{Z \alpha}{\sqrt{1-\varepsilon^{2}}}\right) \phi_{2} \tag{1}\\
& \frac{d \phi_{2}}{d \rho}=\left(-\frac{\kappa}{\rho}+\frac{\alpha}{\sqrt{1-\varepsilon^{2}}} \frac{z}{\rho}\right) \phi_{1}+\frac{\alpha \varepsilon}{\sqrt{1-\varepsilon^{2} \frac{Z}{\rho}}} \phi_{2}
\end{align*}
$$

Solution continued

Solve Eq.(2) for ϕ_{2} and substitute into Eq.(1). This gives a second order differential equation for ϕ_{1} whose solution can be recognized as
$\phi_{1}=\frac{n^{\prime}}{\sqrt{-\kappa+\alpha Z / \sqrt{1-\varepsilon^{2}}}} \rho^{\gamma} F\left(-n^{\prime}+1,2 \gamma+1, \rho\right)$
$\phi_{2}=\sqrt{-\kappa+\alpha Z / \sqrt{1-\varepsilon^{2}}} \rho^{\gamma} F\left(-n^{\prime}, 2 \gamma+1, \rho\right)$
where
$n^{\prime}=\frac{Z \alpha \varepsilon}{\sqrt{1-\varepsilon^{2}}}-\gamma$
$\gamma=\sqrt{\kappa^{2}-Z^{2} \alpha^{2}}$
and $F(a, b, z)$ is the confluent hypergeometric function of
Eq.(A.59) in Appendix A.5. As for the Schrödinger equation, bound states occur when the series for $F(a, b, z)$ terminates. This requires that n^{\prime} is an integer greater than or equal to 1 . Solve for ε in terms of n^{\prime} :
$\varepsilon=\frac{1}{\sqrt{1+\frac{z^{2} \alpha^{2}}{\left(n^{\prime}+\gamma\right)^{2}}}}=\frac{1}{\sqrt{1+\frac{z^{2} \alpha^{2}}{\left(n-\delta_{j}\right)^{2}}}}$
With $\kappa^{2}=(j+1 / 2)^{2}, n^{\prime}=n-|\kappa|$ and $\delta_{j}=|\kappa|-\gamma$ we see that the equation for the eigenenergy agrees with Eq. (2.35) of the text.

