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We showed,

σ · pψA = 1
c (E − V (r) + mc2)ψB .

σ · pψB = 1
c (E − V (r)−mc2)ψA

and used
σ · p = 1

r (σ · r̂)
(
−i~r ∂∂r + iσ · L

)
ψA,B = 1

r φA,B(r)Yj ,m,`A,B
σ · r̂Yj ,m,`=j±1/2 = −Yj ,m,`=j∓1/2
σ · LYj ,m,` = 2

~S · LYj ,m,` = 2
~(j(j + 1)− `(`+ 1)− 3/4)Yj ,m,`

to obtain
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r
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r
G

)
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Our task is to solve these coupled first order differential equations.



Solution

Use atomic units and rationalize variables
ε = E/mc2 e2/~c = α = fine structure constant, c = 1

α ,
λ = 1

α
√
1−ε2 , ρ = 2λr ,

dG
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κ
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1 + εe−ρ/2(φ1 + φ2), G =
√

1− εe−ρ/2(φ1 − φ2)
to get
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)
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Solution continued
Solve Eq.(2) for φ2 and substitute into Eq.(1). This gives a second
order differential equation for φ1 whose solution can be recognized
as
φ1 = n′√

−κ+αZ/
√
1−ε2

ργF (−n′ + 1, 2γ + 1, ρ)

φ2 =
√
−κ+ αZ/

√
1− ε2ργF (−n′, 2γ + 1, ρ)

where
n′ = Zαε√

1−ε2 − γ
γ =
√
κ2 − Z 2α2

and F (a, b, z) is the confluent hypergeometric function of
Eq.(A.59) in Appendix A.5. As for the Schrödinger equation,
bound states occur when the series for F (a, b, z) terminates. This
requires that n′ is an integer greater than or equal to 1. Solve for ε
in terms of n′:
ε = 1√

1+ Z2α2

(n′+γ)2

= 1√
1+ Z2α2

(n−δj )2

With κ2 = (j + 1/2)2, n′ = n− |κ| and δj = |κ| − γ we see that the
equation for the eigenenergy agrees with Eq. (2.35) of the text.


