Commutation relations

Below are listed several commutation relations.
$\mathbf{p}=$ momentum, $\mathbf{r}=$ position coordinate. Components p_{i}, x_{j}. $\left[p_{i}, x_{j}\right]=-i \hbar \delta_{i j}$ which is equivalent to $[\mathbf{a} \cdot \mathbf{p}, \mathbf{b} \cdot \mathbf{r}]=-i \hbar \mathbf{a} \cdot \mathbf{b}$
$\mathbf{L}=\mathbf{r} \times \mathbf{p}$
$\left[L_{i}, L_{j}\right]=i \hbar \varepsilon_{i j k} L_{k}$ where summation over k is implied and $\varepsilon_{i j k}$ is the antisymmetric tensor with elements that vanish if any two indices are identical, $\varepsilon_{123}=1$ and all other indices are ± 1 depending upon whether the indices are an even or odd permutation of 123 . Sometimes this is stated

$$
\left[L_{x}, L_{y}\right]=i \hbar L_{z}, \quad \text { cycliclly }
$$

The commutation relation can also be written $[\mathbf{a} \cdot \mathbf{L}, \mathbf{b} \cdot \mathbf{L}]=i \hbar \mathbf{a} \times \mathbf{b} \cdot \mathbf{L}$
These commutation relations hold for any angular momentum operator \mathbf{j}. They hold for the spin- $1 / 2$ operator $\mathbf{S}=i \hbar \frac{1}{2} \sigma$ of chapter I of the text.

Problem assignment III.

(1) Do Problem 2.1 of the text.
(2) Verify Eqs. 1.266 and 1.267 .
(3) Show that $\mathbf{J}=\mathbf{L}+\mathbf{S}$ commutes with the Dirac Hamiltonian $H_{0}=c \boldsymbol{\alpha} \cdot p+\beta m c^{2}$
(4) Suppose that the potential $V(r)=-g / r$ is a 4-scaler potential. Write Dirac's equation including this potential. Show that Dirac's equation is equivalent to the Klein-Gordan equation

$$
\left[p^{2}+\left(m c^{2}-V\right)^{2}\right] \psi=E^{2} \psi
$$

Note that this equation can be solved much like the Schrödinger equation.

