Physics 601, B-matrix

Wave functions for the square well potential:

Potential:

$$
\begin{align*}
& V(r)=-V_{0}, r \leq r_{0} \\
& V(r)=0 . r>r_{0} \tag{1}
\end{align*}
$$

More generally $V(r)=$ any function for $r \leq r_{0}$.
The S-eq for $\phi(r)$ is

$$
\begin{equation*}
\left(-\frac{\hbar^{2}}{2 \mu} \frac{d^{2}}{d r^{2}}+\frac{\ell(\ell+1)}{2 \mu r^{2}}+V(r)\right) \phi=E \phi \tag{2}
\end{equation*}
$$

For $r \leq r_{0}$ set $\phi=\phi_{i n}(r)$ and assume the equation is solved. For $r>r_{0}$ set $k^{2}=2 \mu E / \hbar^{2}$ and define

$$
\begin{align*}
& u_{\ell}(k r)=j_{\ell}(k r) k r \tag{3}\\
& v_{\ell}(k r)=n_{\ell}(k r) k r \tag{4}
\end{align*}
$$

Define the logarithmic derivative matrix $B(E)$ as

$$
\begin{equation*}
B(E)=\left.\frac{d \log \phi_{i n}(r)}{d r}\right|_{r=r_{0}} \tag{5}
\end{equation*}
$$

[Note: Here I use \log to denote $\log _{e}$ that is \log to the base e. This is the notation, common in mathematics, used in most computer programs. It is identical to ln function commonly used in engineering.] and define

$$
\begin{align*}
u_{\ell}^{\prime}(k r) & =\frac{d u_{\ell}(k r)}{d(k r)} \tag{6}\\
v_{\ell}^{\prime}(k r) & =\frac{d v_{\ell}(k r)}{d(k r)} \tag{7}
\end{align*}
$$

Notice that u^{\prime} and v^{\prime} are defined as derivatives with respect to the argument $k r$ not r. This is done because the functions u^{\prime} and v^{\prime} are then functions only of $k r$. This differs from the derivative used to define $B(E)$ since $\phi_{\text {in }}(r)$ depends upon both r and E, not the combination $\sqrt[2 \mu E]{r}$ as for $u(k r)$ and $v(k r)$.

The solution for $r>r_{0}$ is

$$
\begin{equation*}
\phi(r)=A\left(u_{\ell}(k r)+K_{\ell} v_{\ell}(k r)\right) \tag{8}
\end{equation*}
$$

where A is a normalization constant and K_{ℓ} is a constant to be determined by matching functions and derivatives at $r=r_{0}$. Alternatively, we can match logarithmic derivatives. Matching logarithmic derivatives and recalling the definition of $B(E)$ gives:

$$
\begin{equation*}
B(E)=k \frac{u_{\ell}^{\prime}+K_{\ell} v_{\ell}^{\prime}}{u_{\ell}+K_{\ell} v_{\ell}} \tag{9}
\end{equation*}
$$

and all functions are evaluated at $r=r_{0}$. From the asymptotic forms of u_{ℓ} and v_{ℓ} namely

$$
\begin{align*}
& \lim _{r \rightarrow \infty} u_{\ell}(k r) \rightarrow \sin (k r-\ell \pi / 2) \tag{10}\\
& \lim _{r \rightarrow \infty} v_{\ell}(k r) \rightarrow \cos (k r-\ell \pi / 2) \tag{11}
\end{align*}
$$

we see that

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \phi \rightarrow A \sin \left(k r-\ell \pi / 2+\delta_{\ell}\right) \tag{12}
\end{equation*}
$$

if we set

$$
\begin{equation*}
K_{\ell}=\tan \delta_{\ell} . \tag{13}
\end{equation*}
$$

The quantity δ_{ℓ} is the phase shift for the ℓ ' th partial wave. This quantity has physical significance therefore we solve for K_{ℓ}.

Using the Wronskian relation

$$
\begin{equation*}
u_{\ell}^{\prime} v_{\ell}-u_{\ell}^{\prime} v_{\ell}=1 \tag{14}
\end{equation*}
$$

we have

$$
\begin{equation*}
K_{\ell}=-\frac{u_{\ell}}{v_{\ell}}+\frac{k / v_{\ell}^{2}}{B(E)-k v_{\ell}^{\prime} / v_{\ell}} \tag{15}
\end{equation*}
$$

For simplicity we will drop the subscripts ℓ and suppose that the value of ℓ is known from context.

Instead of solving for K we could solve for $1 / K=\cot \delta$. Then

$$
\begin{equation*}
K_{\ell}^{-1}=K^{(\mathrm{inv})}=\cot \delta=-\frac{v}{u}-\frac{k / u^{2}}{B(E)-k u^{\prime} / u} \tag{16}
\end{equation*}
$$

This quantity does not have a special name, however the closely related quantity namely

$$
\begin{equation*}
M=k^{2 \ell+1} \cot \delta_{\ell} \tag{17}
\end{equation*}
$$

does. It is called the M-matrix. Its importance derives from the property that it is an analytic function of k^{2} and can be expanded in a power series about $k^{2}=0$ according to

$$
\begin{equation*}
M=-\frac{1}{a_{\ell}^{2 \ell+1}}+\frac{1}{2} \frac{1}{\tilde{r}_{\ell}^{2 \ell-1}} k^{2}+\ldots \tag{18}
\end{equation*}
$$

where the first two terms define the quantities a_{ℓ} called the scattering lengths and r_{ℓ} the effective ranges. Often the terms "scattering length" and "effective range" refer to the $\ell=0$ quantities only. [Note: do not confuse the cutoff distance r_{0} with the effective range \tilde{r}_{0}. Determine the meaning from context.].

The phase shift is the main physical quantity extracted for $E>0$. For $E<0$ we define $k=i \kappa, \kappa>0$ and seek wave functions that are physically acceptable even though the wave vector $k=i \kappa$ is complex.

For $E<0$ we know that there are no physically acceptable solutions, i. e ones that decrease as $e^{-\kappa r}$ except at special value of E called the eigenenergies or eigenvalues of the hamiltonian H. To find these values we rewrite Eq. (12) as

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \phi \rightarrow \frac{A e^{-i \delta}}{2 i}\left(S^{-1} e^{-(i k r-\ell \pi / 2)}-e^{i(k r-\ell \pi / 2}\right) \tag{19}
\end{equation*}
$$

where

$$
S=e^{2 i \delta}
$$

is the scattering matrtix or S-matrix. Now if we write Eq. (19) for $E<0$ using $k \rightarrow i \kappa$ we see that ϕ diverges exponentially as $r \rightarrow \infty$ unless $S^{-1}=0$ We can write the equation $S^{-1}=0$ in terms of K as

$$
\begin{equation*}
S^{-1}=\frac{e^{-i \delta}}{e^{i \delta}}=\frac{\cos \delta-i \sin \delta}{\cos \delta+\sin \delta}=\frac{\cot \delta-i}{\cot \delta+i}=\frac{i+\tan \delta}{1-i \tan \delta}=\frac{i+K}{i-K}=0 \tag{20}
\end{equation*}
$$

This gives the equation

$$
\begin{equation*}
K(E)+i=0 \tag{21}
\end{equation*}
$$

as the equation determining the eigenvalues.
A plot of $\Im[K(E)+i]$ or $\Im\left[K^{(i n v)}(E)-i\right]$ locates the bound states at energies where the curve crosses 0 .

Problem: 1a. Compute the s-wave $(\ell=0)$ scattering length for a square well potential with $V_{0}=2 \mathrm{au}, \mu=m_{e}=1 \mathrm{au}$ and cutoff distance $r_{0}=2.33 \mathrm{au}$. Recall that atomic units
(au) take $e=\hbar=m_{e}=1$. How many $\ell=0$ bound states does this potential have? Give the eigenenergies of the bound states.

