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Polarization

The polarization P is defined as the dipole moment per unit volume,
averaged over the volume of a cell. The total dipole moment,

=) q,F,

The electric field at a point r from a dipole moment p is:
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When a dipole 1s placed in an external electric field, it interacts with the field.
The field exerts a torque on the dipole which is given by

T=pX &, (8.3)

where & is the applied field (Fig. 8.2). The magnitude of the torque is
T = pé sin 0, where 0 is the angle between the directions of the field and the
moment, and the direction of T is such that it tends to bring the dipole into
alignment with the field. This tendency toward alignment is a very important
property, and one which we shall encounter repreatedly in subsequent discussions.
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Fig. 8.2 The torque exerted on one dipole by an electric field. Vectors ¢& and — g&
represent the two forces exerted by the field on the point charges of the dipole.



Another, and equivalent, way of expressing the interaction of the dipole with
the field is in terms of the potential energy. This is given by

V=—-p&&§=—p&cost, (8.4)

which is the potential energy of the dipole. We can see that the energy depends
on 6, the angle of orientation, and varies between —pé&, when the dipole is
aligned with the field, and pé, when the dipole is opposite to the field. Because
the energy is least when the dipole is parallel to the field, it follows that this is the
most favored orientation, i.e., the dipole tends to align itself with the field. This
is, of course, the same conclusion reached above on the basis of torque
consideration.

In discussing dielectric materials, we usually talk about the polarization P
of the material, which is defined as the dipole moment per unit volume. If the
number of molecules per unit volume is N, and if each has a moment p, it follows
that the polarization is given byt

P = Np, (8.5)

where we have assumed that all the molecular moments lie in the same direction.



When a medium is polarized, its electromagnetic properties change; this
is expressed through the well-known equation

D =¢,8 + P, (8.6)

where D 1s the electric displacement vector and & the electric field in the medium.
It i1s also well known that the displacement vector D depends only on
the external sources producing the external field, and is completely unaffected

by the polarization of the medium.f It follows that the external field &,, that is,
the field outside the dielectric, satisfies the relation

D = Eﬂgﬂ" [3?]‘
When we compare this with (8.6), we find that

1
& =6y ——P, (8.8)
€0
showing that the effect of the polarization is to modify the field inside the medium.
In general, this results in a reduction of the field.



Equation (8.6) is usually rewritten in the form
D =& = ¢u¢,8, (8.9)
where the relative dielectric constant
e, = €feg (8.10)

expresses the properties of the medium. All the dielectric and optical characteris-
tics of the substance are contained in this constant, and indeed much of this
chapter is concerned with evaluating it under a variety of circumstances. Thus it
follows that we can gain much information about a medium by measuring its
dielectric constant. From this point on, we shall refer to the relative dielectric

constant €, as simply the dielectric constant, since we rarely need to use the actual
dielectric constant € = ege,.



éa.[} = Vg,l'lL,

medium—i.e., the lining up of the dipole moments along the field—which, in
turn, modifies the field to a new value &. This new field can be determined by mea-
suring the new potential difference V by a voltmeter, and using the relation

& = V/L, (8.12)
The dielectric constant is given in terms of the fields &, and & by the relation
e, = 6,o/6, (8.13)

as can be seen by comparing (8.9) with (8.10). It follows, therefore, that
Er = V(}!l/, (8'14)



Since the polarization of a medium—i.e., the alignment of the molecular moment—
is produced by the field, it is plausible to assume that the molecular moment is
proportional to the field. Thus we write

p=uad, (B.15)

where the constant « is called the polarizability of the molecule. The expression
(8.15) is expected to hold good, except in circumstances in which the field becomes
very large, in which case other terms must be added to (8.15) to form what is, in
effect, a Taylor-series expansion of p in terms of 4. Equation (8.15) may be re-
garded as the first term in this expansion. (Higher-order terms lead to nonlinear
effects.)

The polarization P can now be written as

P = Naé&, (8.16)

which, when substituted into (8.6), yields

N
D = & + Nad = ¢, (1 + —“) s 8.17)

€0
Comparing this result with (8.9), one finds

e, = 1 + (Nujfeg), (8.18)



The electric susceptibility y of a medium is defined by the relation
P = ¢, x&, (8.19)

which relates the polarization to the field. By comparing this equation with
(8.16), we find that the susceptibility and polarizability are interrelated by

N
o (8.20)

€0
and hence Eq. (8.18) may be written simply as
e =1+ 7. (8.21)

Thus the departure of the dielectric constant from unity, the value for vacuum,
is equal to the electric susceptibility.t (If several gaseous species are present,
than the factor Na in (8.20) should be replaced by 3> ;N,«;.)

Equation (8.18) may also be written in terms of the density of the medium by
noting that N = pN,/M, where p is the density, M the molar mass, and N,
Avogadro’s number. Thus

e, = 1 + (pN JeoM)ar. (8.22)

This expression, indicating that e, increases linearly with density, holds in gases,
in which density can be conveniently varied over a wide range. This fact lends
support to the argument used in the derivation of (8.19), and in particular to
(8.15).



Experiments do show, however, that Eqgs. (8.18) or (8.22) do not hold well
in liquids or solids, i.e., in condensed physical systems. This point is important
to us here, as our primary interest lies in describing solid substances, and we must
therefore seek a better expression for the dielectric constant than (8.18). The root
of the difficulty lies in (8.15). Itis implied here that the field acting on and polariz-
ing the molecules is equal to the field &, but a closer examination reveals that this is
not necessarily so. If it develops that the polarizing field is indeed different from &,
relation (8.15) should then be replaced by

p o 'xgluc: (8'23)

where &), 1s, by definition, the polarizing field—also called the /ocal field.



(2) (b)

concerned (Fig. 8.5). The interaction of our dipole with the other dipoles lying
inside the cavity is, however, to be treated microscopically, which is necessary since
the discrete nature of the medium very close to the dipoles should be taken into
account. The local field, acting on the central dipole, is thus given by the sum

e =6+ &1 + &3 + &5, (8.24)

where &, is the external field, &, the field due to the polarization charges lying
at the external surfaces of the sample, &, the field due to the polarization charges
lying on the surface of the Lorentz sphere, and &4 the field due to other dipoles
lying within the sphere. Note that the part of the medium between the sphere
and the external surface does not contribute anything since, in effect, the volume
polarization charges compensate each other, resulting in a zero net charge in this
region,
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&, : This field, due to the polarization charges on the external surface, is also known
as the depolarization field, since it is obviously opposed to the external field. The

value of this field depends on the geometrical shape of the external surface, and
for the simple case of an infinite slab is given by

& = — L1?, (8.25)

€0
which you may confirm by using Gauss’ law. The depolarization fields for other

geometrical shapes can be found in the references (Kittel, 1971), as well as in the
problems.



&,: The polarization charges on the surface of the Lorentz cavity may be
considered as forming a continuous distribution (recall that the cavity i1s large)

whose density is —Pcos 6. The field due to the charge at a point located at the
center of the sphere is. according to Coulomb’s law, given by

i Pcos 0
&, = J. ( — ) cos 0 (2xR* sin 6 d0), (8.26)

0 4?IEDR .

where the additional factor cos @ is included because we are, in effect, evaluating
only the component of the field along the direction of P (other components
vanish by symmetry), and the factor 2zR? sin @ d0 is the surface element along the
sphere (see Fig. 8.5b). Integration of (8.26) leads to the simple result

1
& = —P, (8.27)

3Eﬂ

a field in the same direction as the external field.



&5: This field, which is due to other dipoles in the cavity, may be evaluated by
summing the fields of the individual dipoles using (8.2). The result obtained
depends on the crystal structure of the solid under consideration, but for the case
of a cubic structure it may readily be shown that the sum vanishes. That 18,

33 —_— 0, (8.28}



If the various fields are now substituted into (8.24), one finds that

2
Cloe =6y — — P, (8.29)

3¢,

which gives the polarizing field in terms of the external field and the polarization.
We may compare the value of &, . obtained above with that of & in (8.8).
We discover that

glﬂc =& T LPT (8.30}
3eq

which shows that &, is indeed different from &, as we have suspected. The former
field is, in fact, larger than the latter, so the molecules are more effectively polarized
than our earlier discussions have indicated. Equation (8.30) is known as the Lorentz
relation.
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Let us now evaluate the dielectric constant. The polarization, according to
(8.23) and (8.16), is given by

£

P = Nod\,, (8.31)

which, when used in conjunction with (8.30), yields
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8. (8.32)
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Dielectric constant and polarizability

The dielectric constant ¢ of an isotropic medium relative
to vacuum is defined as

E +47P
E

g =1+4 7y

The polarizability « of an atom is defined in terms of the local
electric field at the atom:
p = aEIocaI

The polarization of a crystal is then

P=> N;p;= > Na,E.(j)
j j



If the local field is given by the Lorentz relation, then

P=> N (E+—P) (> NJaJ)(E—|—4—ﬂP)
P ZNJaJ
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The total polarizability can be separated into three parts:

1. electronic: arises from the displacement of the electron shell
relative to a nucleus.

2. 1onic: comes from the displacement of a charged ion with
respect to other ions.

3. dipolar: from molecules with a permanent electric dipole
moment that can change orientation in an applied electric field.



8.4 SOURCES OF POLARIZABILITY
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There are different types nf'_pu]arizatinn processes, depending on the structure
of the molecules which constitute the solid. If the molecule has a permanent

moment, 1.6., a moment even in the absence of an electric field, we speak of
a dipolar molecule, and a dipolar substance.
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Fig. 8.7 (a) The water molecule and its permanent moment, p = 1.9 debye units
(1 debye = 1072° coul-m). (b) CO, molecule.



If the molecule contains ionic bonds, then the field tends to stretch the lengths
of these bonds. This occurs in NaCl, for instance, because the field tends to
displace the positive ion Na™ to the right (see Fig. 8.8), and the negative ion C1~
to the left, resulting in a stretching in the length of the bond. The effect of this
change in length is to produce a net dipole moment in the unit cell where previously
there was none. Since the polarization here is due to the relative displacements of
oppositely charged ions, we speak of ionic polarizability.

Fig. 8.8 Tonic polarization in NaCl. The field displaces the ions Na™ and CI~ in
opposite directions, changing the length of the bond.



Nucleus (charge Ze)
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Fig. 8.9 Electronic polarization. (a) Unpolarized atom. (b) Atom polarized as a result
of the field.
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In general, thr._arefore, we may write for the total polarizability
a=a, + o; + oy, (8.36)

which is the sum of the various contributions; «,, o;, and o4 are the electronic,
1onic, and dipolar polarizabilities, respectively. The electronic contribution 1s
present in any type of substance, but the presence of the other two terms depends
on the material under consideration. Thus the term o«; is present in ionic
substances, while in a dipolar substance all three contributions are present. In
covalent crystals such as Si and Ge, which are nonionic and nondipolar, the
polarizability is entirely electronic in nature.
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violet region. It can be seen that in the range w = 0 to w = w,, where w; (d for
dipolar) is some frequency usually in the microwave region, the polarizability is
essentially constant. In the neighborhood of w,, however, the polarizability de-
creases by a substantial amount. This amount corresponds precisely, in fact, to the
dipolar contribution a,. The reason for the disappearance of o, in the frequency
range o > w, is that the field now oscillates too rapidly for the dipole to follow,
and so the dipoles remain essentially stationary.

The polarizability remains similarly unchanged in the frequency range w,
to w;, and then plummets at the higher frequency. The frequency w; lies
in the infrared region, and corresponds to the frequency of the transverse optical
phonon in the crystal @, (Section 3.12). For the frequency range w > w,, the ions
with their heavy masses are no longer able to follow the very rapidly oscillating
field, and consequently the ionic polarizibility «; vanishes, as shown in Fig. 8.10.



. Polarizability of atomic hydrogen. Consider a semiclassical model of the ground
state of the hydrogen atom in an electric field normal to the plane of the orbit
(Fig. 25), and show that for this model a = a};, where ay is the radius of the un-
perturbed orbit. Note: If the applied field is in the x direction, then the x compo-
nent of the field of the nucleus at the displaced position of the electron orbit must
be equal to the applied field. The correct quantum-mechanical result is larger than
this by the factor 3. (We are speaking of a, in the expansion @ = a; + ,E + * - .)
We assume x < ay. One can also calculate a, on this model.

Figure 25 An electron in a circular orbit of radius ay

is displaced a distance x on application of an electric

field E in the —x direction, The force on the electron

due to the nucleus is e¥a}; in CGS or e*/4meyas; in SI. Chapter 13-28
The problem assumes x < ay.




8.5 DIPOLAR POLARIZABILITY

Suppose the field is along the x-direction. The potential energy of the dipole
is given, according to (8.4), by

V=—p+&§=—p&cosh, (8.37)

where 0 is the angle made by the dipole with the x-axis (Fig. 8.11). The dipole is
no longer oriented randomly. The probability of finding it along the 6-direction
is given by the distribution function

Fm e VKT — pS cosOKT, (8.38)

This expression is simply the Boltzmann factor, well known from statistical mech-
anics, with the potential energy being the orientational energy of (8.37). This
distribution function, shown in Fig. 8.11(b), indicates that the dipole is more likely
to lie along the field § ~ O than in other directions, in agreement with the picture
developed previously.



The average value of p,, the x-component of the dipole moment, is given by the
expression

_ . f(0)dQ

where the integration is over the solid angle, whose element is dQ. By carrying
out the integration over the whole solid angle range (Fig. 8.11c), we take into
account all the possible orientations of the dipole. The function f (6) is the distribu-
tion function of (8.38) with its dependence on 8 indicated, and the denominator
in (8.39) is included for a proper normalization of this distribution function. In
evaluating expression (8.39), we use the formulas p, = pcos 0, dQ = 2nsin 0 do




(where the factor 2z arises from the integration over the azimuthal angle ¢),
f(6) taken from (8.38), and the limits on the integrals # = 0 and @ = n. Thus

P = J p cos 0 ePé < Ok 27 5in dﬂ/j ePé s O/kT 91 5in 0 d0,

0 0

which, when evaluated, yieldst

f_’x =p L(H')s (3'«4{})
where
1 &
L) = Coth @) —— and  u= if. (8.41)

u=pg&/RT

Fig. 8.12 The Langevin function [.(x) versus u.



The function L(u), known as the Langevin function, is plotted in Fig. 8.12.
Near the origin the function increases linearly, and one may show that L(u) ~ Lu
As u increases, the function continues to increase, monotonically, eventually
saturating at the value unity as ¥ — o0 . The dipole moment 7., as a function of
p&kT, has the same shape as Fig. 8.12, except for a change of the vertical scale
by a constant p. Thus, for small values of the field, 5, increases linearly, while at
very high field, p, saturates at the maximum value p. This shows that at very high
field the dipole points exactly along the field, which is a plausible result.

In most experimental situations, the ratio u = p&/kT is very small. For
example, if we take p ~ 107%° coul -m, & = 10° V/m, and T = 300°K, we find
u ~ 10™*%, which is very small indeed compared with unity, Thus we may use the
low-field approximation

A A | (8.42)




The result (8.42) may also be obtained from the following physical argument.
As we know, the effect of a field is to align the dipoles, whereas the effect of

temperature is to oppose this and to randomize the direction of the dipoles. There-
fore one may write

orientational energy
thermal energy

Pe=0p

If we substitute the values orientational energy = p& and thermal energy ~ kT
we obtain

3

0y =2 (8.43)



8.6 DIPOLAR DISPERSION

The equation we shall use to describe the motion of the dipolar polarization 1s

d 1
Pen) [pds(r) - pd{r)], (8.45)

where p,(t) is the actual dipolar moment at the instant t, while p, (1) is the
saturated (or equilibrium) value of the moment, which would be the value
approached by p,(¢) if the field were to retainits instantaneous value foralong time.
We have assumed that the rate of increase of p,(¢) is proportional to the departure
of this moment from its equilibrium value, and the quantity 7 is called the
relaxation time, also referred to as the collision time.

Let us illustrate the meaning of (8.45) in a very simple situation. Suppose that
a static field is applied at the instant # = 0. In that case, py(f) = 2,6 = Po
(po is the permanent moment of the molecule), because this is the value reached



by the moment long after the application of the field, where «, is the static
polarizability calculated in Section 8.5. Equation (8.45) now reduces to

dps  pit)  po
dt T A (8.46)
which, as a first-order linear differential equation, can be readily solved,
yielding

pi(t) = po(l — e™""). (8.47)

Thus the moment rises toward its equilibrium value in an exponential fashion,
(Fig. 8.15), much like the direct-current rise in an R-L electrical circuit (of time
constant 1) when the battery has just been connected.

Palt)




Let us now apply (8.45) to the case of an ac field
E(t) = Ae™ . (8.49)
The equilibrium moment is given by
Pas(t) = 04(0)E (1) = 0y(0)4 e~ ™", (8.50)

where o,(0) is the static dipolar polarizability discussed in Section 8.5. Clearly
the expression (8.50) is the value which would be reached by p,(t) if the field were



to remain equal to &(¢) at all subsequent times (that is, for ¢’ > ¢). Equation (8.45)
now reduces to

dp,(t) + pa(t) _ a4(0)
dt T T

&(t). (8.51)

Since the driving term on the right is varying harmonically in time, as indicated by
(8.49), we try a solution of the form

pa(t) = a(@)E(t) = oy(w)A e, (8.52)

where o,(w) is, by definition, the ac polarizability. When this is substituted into
(8.51), one readily arrives at

oty(0)
1 — iwt

og(w) = (8.53)

It can be seen that the ac polarizability is now a complex quantity, indicating that
the polarization is no longer in phase with the field. This gives rise to energy
absorption, as we shall see shortly.



To derive the corresponding expression for the dielectric constant e,(w),
we write

(@) =1+ y(0) + yx4(w),

where y.(w) and y(w) are the electronic and dipolar susceptibilities, respectively.
We have assumed for simplicity that the ionic contribution is sufficiently small
to be negligible, and we have also ignored the local field correction, i.e., we have
used (8.18). Now in the frequency region in which dipolar dispersion is
significant—i.e., the microwave region—the electronic susceptibility is constant
because the electrons, being so light, can respond to the field essentially
instantaneously. We may therefore write the above equation as

() = n* + y(w), (8.54)

where n* =1 + y, is the optical dielectric constant and » is the index of
refraction.



The dipolar contribution y,(w) = ¢,(w) — n®> does not follow the field
instantaneously. There is a phase lag, as implied by the complex polarizability of
(8.53). Since y, is proportional to «, (see 8.20), it follows that y,(w) has the same
complex form as oy(w) in (8.53), and one may then write (8.54) in the form

€,(0) — n?

- (8.35)
1 — iwt

6,(w) = n* +

b

where the numerator on the right gives the static value of the dipolar susceptibility,
that is, y,(0) = ¢.(0) — n*. Equation (8.55) is the expression we have been

seeking for the dielectric constant. This quantity is clearly frequency dependent,
signifying that the medium exhibits dispersion.
This dielectric constant, being a complex quantity, can be written as

() = &) + ie/ (), (8.56)

yielding for the real and imaginary parts

, 5 &(0) — n?
€(w) =n* + T ol (8.57a)
and
., _ &(0) — n*
€, (m) = m wT, (85?'3)

which are known as Debye’s equations.
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Fig. 8.16 Real and imaginary parts €/(w) and €'(w) versus log (wt) for a dipolar
substance,



The rate of energy loss in the system may be calculated as follows:
The polarization current density is

dP
J=—, 8.58
E? (8.58)
and therefore the rate of joule heating per unit volume is given by
0 =Jé. (8.59)

The polarization vector is given in terms of the dielectric constant by the relation
P(1) = € [,(w) — 11 (1)
= ¢g [(e.(w) — 1) + i/ (w)] &(1), (8.60)
which can also be written as
P(1) = € ¢ (w) € (1), (8.61)
where €'(w) = [(e,(w) — 1)* + €'*(@)]*'? and ¢ is an angle given by

e (w)

tan ¢ = @ -1

(8.62)



[t is evident from (8.61) that the polarization lags behind the field by an angle ¢
(recall that &(r) ~ e~ ™).
The density of the polarization current 1s now given according to (8.58) and
(8.61) by
J = — iweyet () € &(1)

= weger (w) P~ £(1), (8.63)

which precedes the field by a phase angle ¢’ = (— ¢ + n/2). [Draw the figure.]
If we now substitute this value into (8.59) and determine the time average, we
obtain

Q =3 |J||é] cos ¢’
= *21 eﬂmff(m) SIN qf} ]éylz
= } cowe; () |€]%, (8.64)
where we have used (8.62) in the last equation. Note that the loss rate is

proportional to w e, (w), that is, essentially to e€(w). Thus the loss rate 1is
greatest near the collision frequency.



Measuring the di¢lectric constant enables us to determine the relaxation time,
as we have just seen. This time depends on the interaction between the dipolar
molecule and the fluid in which it rotates. Debye has shown that, when we treat
the surrounding medium as a viscous fluid, the relaxation time for a spherical
molecule 1s given by

o 4y R>
- kT
where 7 1s the viscosity of the fluid and R the radius of the molecule. For

water at room temperature, 5 ~ 0.01 poise, R ~ 2A, leading to t ~ 2.5 x 107 11g
in approximate agreement with experiment.

, (8.65)



The time 7 increases as the temperature is lowered both because of T in the
denominator and because viscosity increases as temperature decreases. For exam-
ple, the relaxation time in ice at — 20°C is of the order of 107 7s, which is five
orders of magnitude greater than the value at room temperature. Table 8.2 lists
relaxation times for a few simple liquids at room temperature.

Table 8.2

Relaxation Times at 20°C

Substance T
Water 9.5 x 10~ 1
Alcohol 13
Chloroform 0D
Acetone 0.33
Chlorobenzene 0.12
Toluene 0.75

-butyl chloride 0.48




8.9 ELECTRONIC POLARIZABILITY

Now that we have discussed dipolar and ionic polarizabilities, let us look at elec-
tronic polarizability and dispersion. We shall give a classical treatment first as a
preliminary to the quantum discussion to follow.

(Classical treatment

To find the static polarizability, we assume that the electrons form a uniform,
negatively charged sphere surrounding the atom. It can be shown through the
laws of electrostatics that when a field & is applied to this atom, the nucleus 1s
displaced from the center of the sphere by a distance

4“EUR3
X = (— ) &, (R.76)
Ze

where R is the radius of the sphere (the atomic radius), and Ze the nuclear
charge (see the problem section). The atom is thus polarized, and the dipole
moment, p = Zex, yields the electronic polarizability

a, = 4negR’, (8.77)

If we substitute the typical value R = 10~ '° m, we find that o, = 10~%! farad - m®,
in an order of magnitude which has actual polarizabilities given in Table 8.4.

To find the ac polarizability, we assume that the electrons in the atom exper-
ience an elastic restoring force corresponding to a resonant frequency @q.T



Table 8.4

Electronic Polarizabilities for Some Inert Gases and Closed-Shell Alkali and
Halogenic Ions (in units of 10™*° farad m?).

Inert gases Alkali cores Halogenic closed-shell
He 0.18 Lit 0.018 F~ 0.76
Ne 0.35 Na*t 0.20 Cl™ 2.65
Ar 1.74 K* 0.86 Br~ 3.67
Kr 22 Rb* 1.34 [~ 5.5

Xe 3.6 Cs*t 2.20




When the ac field is polarized in the x-direction, the appropriate equation of motion
for the electron is

2x= —eé. (8.78)

Assuming an ac field & = &, e~ ', one can readily solve for x and the polarization.
The polarizability is found to be

e?fm

(o) = 3 (8.79)

0 — o

If there are Z electrons per atom and N atoms per unit volume, the resulting
electric susceptibility is

NZe*leam
Le(©) = ————, (8.80)
ﬂ].ﬂ — L}

and the index of refraction is given by

NZe*Jegm (£.81)
wf — w?’

n(w)=1+



Fig. 8.21 Square of index of refraction n’(w) versus frequency, illustrating dispersion in
ultraviolet region due to motion of electrons.

Figure 8.21 plots the function n*(w) versus w, and shows strong dispersion at the
resonance frequency w,. Such behavior is typical of all resonant systems, and
reflects the strong interaction between the driving field and the system when the
frequency-matching condition is satisfied, that is, when @ ~ @,. The
annoying divergence at @ = w, can be removed by including a collision term
in Eq (8.78), as we did in Section 4.11. [Indeed, the results thus obtained should



Show that the polarizability of a conducting metallic sphere

of radius a is = a°.

Figure 26 The total field inside a conducting sphere is zero. If
a field E, is applied externally, then the field E, due to surface
charges on the sphere must just cancel E,, so that E, + E, = 0
within the sphere. But E, can be simulated by the depolariza-
tion field —4#P/3 of a uniformly polarized sphere of polariza-
tion P. Relate P to E, and calculate the dipole moment p of the
sphere. In SI the depolarization field is —P/3¢;,.
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Structural phase transitions

The stable structure at a temperature T is determined by the
minimum of the free energy F =U —TS.

Ferroelectric crystals

A ferroelectric state is a state where the center of positive charge
of the crystal does not coincide with the center of negative charge.

Ferroelectricity disappears above a certain temperature, where the
crystal is in the paraelectric state.



« Ferroelectricity

« Ferroelectricity is an electrical phenomenon
whereby certain materials may exhibit a
spontaneous dipole moment, the direction of
which can be switched between equivalent
?te;ées by the application of an external electric

leld.

= The internal electric dipoles of a ferroelectric
material are physically tied to the material lattice
so anything that changes the physical lattice will
change the strength of the dipoles and cause a
current to flow into or out of the capacitor even
without the presence of an external voltage
across the capacitor.
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Ferroelectric properties

Most ferroelectric materials undergo a structural
phase transition from a high-temperature
nonferroelectric (or paraelectric) phase into a
low-temperature ferroelectric phase.

The paraelectric phase may be piezoelectric or
nonpiezoelectric and is rarely polar.

The symmetry of the ferroelectric phase is
always lower than the symmetry of the
paraelectric phase.
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« The temperature of the phase transition is called the
Curie point, T..

= Above the Curie point the dielectric permittivity falls off
with temperature according to the Curie—Weiss law

c _cC
T—-T, T-T

£ =g+

¢ where C is the Curie constant, T, (T, <T.) is the Curie-Weiss
temperature.

« Some ferroelectrics, such as BaTiO,, undergo several
phase transitions into successive ferroelectric phases.
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= A naive picture
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= A naive picture
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= A naive picture
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= A naive picture
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= A naive picture

= The local alignment of

dipoles can exist over any
_’ A" 7 o length scale.
., . . _, | = Different regions may
exist with different
. . — — polarisation orientations:
---------------- ¢ Call these “domains” in line
— — — «— with magnetic materials.
¢ In contrast with magnetism,
«— «— «— «— domain walls are abrupt.
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= Applied field

= Suppose we now apply an electric field,
horizontal in the figure.

« If it is of sufficient strength, the small ions will be
able to overcome the barrier and dipoles will
switch direction

¢ The dipoles are polarised by the applied field.
¢ Domain walls move.

A Alv v v
AAly v v
aalv vy
aaly vy
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= Polarisation vs. E-field

= Suppose we start with a material where there
are many domains which are aligned
randomly.

¢ \What is the initial polarisation?
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Polarisation vs. E-field

If we apply a small electric field, such that it is
not able to switch domain alignments, then the
material will behave as a normal dielectric:

& PcE

As E is increased, we start to flip domains and
rapidly increase P.

When all domains are switched, we reach
saturation.

What happens if the E-field is now removed?
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Polarisation vs. E-field

The value at zero field is termed the remnant
polarisation.

The value of P extrapolated back from the
saturation limit is the spontaneous
polarisation.

Reversal of the field will eventually remove all
polarisation

¢ The field required is the coercive field.

Further increasing the reverse field will

completely reverse the polarisation, and so a
hysteresis loop is formed...
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Polarisation hysteresis
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« Polarisation hysteresis

= The essential feature of a ferroelectric is not that
there is a spontaneous polarisation, but that the
spontaneous polarisation can be reversed by
the application of an electric field.

= Now, AE is small enough for the applied field to
reverse the direction of the dipoles, i.e. move the
atoms within the crystal, what else might affect

this change?
= What are the relative sized of AE and kgT?

= What will happen if AE<kgT?
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= Curie temperature

« Above a critical temperature
the spontaneous polarisation
will be lost due to one of two

effects: \ 7

¢ A change of structure such that Displacement
there is a single minimum in the
energy mid-way between sites

¢ The rate that the small ions hop is
so high that on average there is
no net polarisation

Energy
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Domain Wall Movement

Domain movement
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Piezoelectric effect

The application of an
electric field induces a
geometrical change.

Alternatively, a
distortion of the
material induces a
potential difference.

Used in many
electrical devices, e.q.
sound-to-electricity
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8.10 PIEZOELECTRICITY

In this and the following sections we turn to certain phenomena associated
with ionic polarization. The term piezoelectricity refers to the fact that, when a
crystal is strained, an electric field is produced within the substance. As a result
of this field, a potential difference develops across the sample, and by measuring
this potential one may determine the field. The inverse effect—that an applied field
produces strain—has also been observed. (It was discovered in about 1880.)

The piezoelectric effect is very small. A field of 1000 V/ecm in quartz produces a
strain of only 10”7, That is, a rod 1 cm long changes its length by 10A.
Conversely, even small strains can produce enormous electric fields.

The piezoelectric effect is often used to convert electrical energy Into
mechanical energy, and vice versa; i.e., the substance is used as a transducer.
For instance, an electric signal applied to the end of a quartz rod generates a
mechanical strain, which consequently leads to the propagation of a mechanical
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Fig. 8.24 Crystal with center of inversion exhibits no piezoelectric effect. (b) Origin of
piezoelectric effect in quartz: crystal lacks a center of inversion.

It follows that a substance can be piezoelectric only if the unit cell lacks a
center of inversion. Figure 8.24(a) shows this, and demonstrates that if a center of
inversion is present, it persists even after distortion, and consequently the
polarization remains zero. However, when there is no center of inversion, as in
Fig. 8.24(b), distortion produces a polarization. We can now understand, for
example, why no regular cubic lattice can exhibit piezoelectricity.



= Crystallography and ferroelectrics

The crystal classification of a
material has immediate
implications for ferroelectric
effects

¢ There are 32 crystal classes

¢ 11 of them have a centre of
symmetry (centrosymmetric)
and cannot support
ferroelectricity

¢ Of the remaining 21, the O-
point group (432) also
excludes ferroelectricity.

¢ The remaining 20 classes all
exhibit the piezoelectric
effect

¢ Of these, 10 have a unique
polar direction.

TT,0T,0,

C4 S4Cyn Dy Cyy Doy Dy,
D, Cy, Doy

Cy Cs Cop

C, G

C3 S D3 Csy D3y

Ce Can Cen Dg Cey D3y, Dep
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= Classification of ferroelectrics

i. “Crystal-chemical”: hydrogen-bonded (e.g. KH,PO,) or
otherwise (e.g. double oxides).

i No. of polarisation directions: single direction (e.g.
PbTa,O;), several equivalent directions (e.g. BaTiO,).

i~ Centrosymmetric non-polar phase: E.g. Rochelle salts
exhibit piezoelectric phase above T_, whereas BaTiO,
IS centrosymmetric.

v First vs. second order phase change at T.. It turns out
this corresponds to the value of the Curie constant
(C), one group being of the order of 103K, and the
other 10°K.

These four classifications do not necessarily coincide.
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=« Antiferroelectrics

« If the free energy of an
antipolar phase is
comparable to the polar
state then the material is
termed antiferroelectric.

« If a material exhibits
ferroelectric effects in one
polar direction, and
antiferroelectric effects
perpendicular, it may be
termed ferrielectric. Polar

Antipolar
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Perovskites

Perovskite is a naturally occurring mineral with
chemical formula CaTiO,.

This is a prototype for many ABO, materials
which are very important in ferroelectrics.

These materials may be envisaged by
consideration of a non-polar, cubic basic
building block...
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= Perovskites
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= Perovskites

= Below the Curie temperature, these crystals
undergo symmetry lowering distortions. We'll
initially focus up the distortions of BaTiOs.

= [here are three phase transitions in order of
decreasing temperature: 120°C, 5°C, and -90°C.
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= BaTiO,

. Above 120°C BaTiO, o/° : o/o

IS cubic (non-polar)
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= BaTiO,

« From 120°C down to
~5°C, there is a
distortion to a
tetragonal phase.

« All of the cube
directions can l
undergo this type of [
distortion: this leads

to complexity in
domain formation.
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= BaTiO,

=« From 5°C down to
around -90°C the
structure Is
orthorhnombic by
dilation along [110]
directions and l

contraction along [1- S _

10]. o -
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= BaTiO,

« Finally the lowest
temperatures yield
rhombohedra

(distortions along the
body diagonal). l /
=« There are therefore 8

equivalent distortion
directions
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[001]

directions
[110] [111]
directions W/ directions
Orthorombic Rhombohedral

The phase transition sequence in perovskites
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« PbTiO; internal structure

« The foregoing analysis of BaTiO, focuses on the
shape of the unit cell. However, for the
ferroelectric effect, we also require internal
structural changes.

= In light of current interest in Cu-related defects in
lead titanium tri-oxide, we’ll review this
tetragonal system at room temperature...
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PbTiO, internal structure

X-ray and neutron scattering yield the internal structure:
a=3.904A, c=4.150A, so that c/a=1.063.

Taking the Pb site as the origin, the displacements are
& 52:,=+0.040
& 525,=+0.112
& 575,=+0.112
Here Ol are the polar O-sites, and Oll are the
equatorial.
Thus, since the oxygen atoms are all displaced by the

same amount, the oxygen cage remains intact, and
shifts relative to the Ti and Pb sites.
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- PbTiO,
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- PbTiO,

« It should be clear that this system has a net
dipole in each unit cell, and furthermore that the
distortion can be along any of the x, y and z
directions.

= Inreal PbTiO,, there is a non-trivial role for point
defects, especially O-vacancies.
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Classification of ferroelectric crystals

Ferroelectric crystals can be classified into two main
groups: order-disorder and displacive transition.




