
$\vec{R}=n_{1} \vec{a}_{1}+n_{2} \vec{a}_{2}+n_{3} \vec{a}_{3}$

Primitive cell
Wigner-Seitz cell (WS)

First Brillouin zone
The Wigner-Seitz primitive cell of the reciprocal lattice is known as the first Brillouin zone. (Wigner-Seitz is real space concept while Brillouin zone is a reciprocal space idea).

Powder cell

Polymorphic Forms of Carbon

Graphite

- a soft, black, flaky solid, with a layered structure parallel hexagonal arrays of carbon atoms

- weak van der Waal's forces between layers
- planes slide easily over one another

Miller indices

- Miller indices used to express lattice planes and directions
- $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are the axes (on arbitrarily positioned origin)
- a, b, c are lattice parameters (length of unit cell along a side)
- h, k, 1 are the Miller indices for planes and directions expressed as planes: (hkl) and directions: [hkl]
$\vec{R}=n_{1} \vec{a}_{1}+n_{2} \vec{a}_{2}+n_{3} \vec{a}_{3}$

Miller Indices

Rules for determining Miller Indices:

1. Determine the intercepts of the face along the crystallographic axes, in terms of unit cell dimensions.
2. Take the reciprocals
3. Clear fractions
4. Reduce to lowest terms

intercept length reciprocal	a.	b	\cdots
	1	1	∞
	$\frac{1}{1}$	1	1
cleared fraction	1	1	0
Miller indice	(110)		

- Negative values are expressed with a bar over the number
- Example: -2 is expressed $\overline{2}$

- Equivalence of directions

$[101] \neq[110]$
tetragonal

The orientation of planes is best represented by a vector normal to the plane. The direction of a set of planes is indicated by a vector denoted by square brackets containing the Miller indices of the set of planes. Miller indices are also used to describe crystal faces.

- [hkl] represents a direction
- <hkl> represents a family of directions
- (hkl) represents a plane
- \{hkl\} represents a family of planes $\boldsymbol{\operatorname { T H E }}$.

$$
d_{h k l}^{2}\left(\frac{h^{2}}{a^{2}}+\frac{k^{2}}{b^{2}}+\frac{l^{2}}{c^{2}}\right)=1
$$

$$
d_{h k l}=\frac{a}{\sqrt{h^{2}+k^{2}+l^{2}}} \quad \mathrm{~d}_{100}=\text { ? }
$$

$$
\therefore d_{h k l}=\frac{1}{\sqrt{h^{2} / a^{2}}+k^{2} / b^{2}+k^{2} / c^{2}}
$$

(110) planes
(130) planes (-210) planes

(a)

(h)

Speed of sound along directions

- Slip (deformation in metals) depends on linear and planar density
- Slip occurs on planes that have the greatest density of atoms in direction with highest density (we would say along closest packed directions on the closest packed planes)
$v=\sqrt{\frac{\text { Elastic properly }}{\text { inertial property }}}=\sqrt{\frac{\mathrm{B}}{\rho}}$ where $\quad \begin{aligned} & \mathrm{B}=\text { bulk modulus } \\ & \rho=\text { densily }\end{aligned}$

Linear and Planar density

- Linear Density
- Number of atoms per length whose centers lie on the direction vector for a specific crystallographic direction.

$$
\mathrm{LD}=\frac{\# \text { of atoms centered on a direction vector }}{\text { length of direction vector }}
$$

- Planar Density
- Number of atoms per unit area that are centered on a particular crystallographic plane.

$$
\mathrm{PD}=\frac{\# \text { of atoms centered on a plane }}{\text { area of plane }}
$$

Where does a protein crystallographer see the Miller indices?
\square Common crystal faces are parallel to lattice planes

- Each diffraction spot can be regarded as a X -ray beam reflected from a lattice plane, and therefore has a unique Miller index.

Miller indices

A Miller index is a series of coprime integers that are inversely proportional to the intercepts of the crystal face or crystallographic planes with the edges of the unit cell.

> It describes the orientation of a plane in the 3-D lattice with respect to the axes.

The general form of the Miller index is ($\mathrm{h}, \mathrm{k}, \mathrm{l}$) where h, k, and l are integers related to the unit cell along the $\mathrm{a}, \mathrm{b}, \mathrm{c}$ crystal axes.

Irreducible brillouin zone

Reciprocal lattice

$$
\vec{g}=h \vec{a}^{\prime}+k \vec{b}^{\prime}+l \vec{c}^{\prime}
$$

The Bravais lattice after Fourier transform
real space
reciprocal lattice normals to the planes(vectors) points spacing between planes
l (distance, wavelength)
Bravais cell
1/distance between points
(actually, 2p/distance)
$2 \mathrm{p} / \mathrm{l}=\mathrm{k}$ (momentum, wave number)
Wigner-Seitz cell

Brillouin zone

