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Chapter 9: Fermi surfaces and metals

Fermi surfaces and metals

The Fermi surface Is the surface of constant energy & In k space.
The electrical properties of the metal are determined by the shape
of the Fermi surface.



Since the energy of a one-clectron level 1s directly proportional

to k£, when N is enormous the occupied region will be indistinguishable
from a sphere. The radius of this sphere is called k£,. (F for Fermi),

and its volume Q is 47k, /3. The # of allowed k within the sphere is:

ANV ik .
&l [ - ) = —=V. Since each allowed k-value leads to two
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one-clectron levels, we must have N =2 V.

If electron density is n= N/V, then we have n =k, /377



Reduced zone scheme
u,.(F), with k'
outside the first Brillouin zone, we have k =k '+ G.
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For a Bloch function written as ,.(F) = ¢'

W, (F)=

First Brillouin zone



Periodic zone scheme

The energy ¢, of a band Is
periodic function in reciprocal
lattice:e, =& . This is known
as the periodic zone scheme.

In a simple cubic lattice, the
dispersion has form:

g =—a—2y(cosk a+
cosk,a+cosk,a).

Dai/PHYS 342/555 Spring 2012 Chapter 2-5



1. Consider an electron gas of density n, in three dimensions that is completely ferro-
magnetic: all electron spins point in the same direction. Derive:

(a) The Fermi wave vector in terms of n,,.

(b) The parameter r, as the radius in atomic units that encloses one unit of charge.

(c) The average kinetic energy per electron.



1. Figure 5.7 shows the first three Brillouin zones of a square lattice.

a) Show that the area of the third zone is equal to that of the first. Do this by
appropriately displacing the various fragments of the third zone until the first
zone 1s covered completely.

b) Draw the fourth zone, and similarly show that its area is equal to that of the
first zone.

2 Draw the first three zones for a two-dimensional rectangular lattice for which the
ratio of the lattice vectors a/b = 2. Show that the areas of the second and third
zones are each equal to the area of the first.

3. Convince yourself that the shapes of the first Brillouin zones for the fcc and bec
lattices are those in Fig. 5.8.




(a) (b)

Fig. 5.8 The first Brillouin zone for (a) an fecc lattice, and (b) a becc lattice.



Figure 13 First Brillonin zone of the body-
Figure 12 Primitive basis vectors of the body-centered centered cubic lattice. The figure is a regular
cubic lattice, rhombic dodecahedron,
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Magnetic susceptibility

et K= R

m Chapter 11: Diamagnetism and paramagnetism

Bohr-van Leeuwen Theorem
(M) = (y LY =0 according to classical statistics.
— magnetism obeys quantum statistics.

Langevin (free spin}
paramagnetism

Main contribution for free atoms:

* spins of electrons paramagnetism
* orbital angular momenta of electrons
* Induced orbital moments . .
dlamagnetlsm
Van Vleck paramagnetism Electronic structure | Moment
"""""" N e , H: 1s M~S
* Pauli paramagnetism (metals) ~ Temperature
i —— - He: 1s? M=0
iamagnetism
unfilled shell M=0
All filled shells M=0
Magnetization M = magnetic moment per unit volume
Magnetic subsceptibility per unit volume .
g subscep p X = 7 In vacuum, 4 = B.
X ;= molar subsceptibility 210

g = speciﬁc subsc-eptibility nuclear moments ~ 1073 electronic moments



Langevin diamagnetism equation

The diamagnetic susceptibility per unit volume is,

Z:_NZé,‘Z <F2>;

2
6mce

where N 1s the number of atoms per unit volume, <r2> 1s the mean

square distance of the electrons from the nucleus, Z 1s number of

electrons in each nuclei.
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xu in CGS in 107 ecm®*mole: ~1.8 —7.2 —19.4 —-28.0 ~43.0
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Larmor Precession

J(x'
A :ljaﬁx' ( ?
c ‘ X—X
Magnetic (dipole) moment: = ZL d’x' x'x J(x') A=1 j X
c r
For a current loop: Jdx=1dl m:—mxx] dl =— Area
c ¢

For a charge moving in a loop:  J(x)=g vV 5(x —Xq) ( charge atx, )

m = Ljd3x’ X’Xq ch(X'—X ) :ix XV — q L = ¥ L Caution: we’ll set L ton L
2c 1 2¢ 1! 2mc in the quantum version
Classical c ratio 7 =7~ iy =5
‘lassical gyromagnetic ratio > e BT
: : dL
Torque on m in magnetic field: I'=——=mxB =y LxB

dt

— L precesses about B with the Larmor frequency o, =yB = 95

2mec
_48

dv g
[Lorentz force: m i = - vxB — cyclotron frequency @, e 20,



Paramagnetism

Electronic paramagnetism:

1. Atoms, molecules, and lattice defects possessing an odd number
of electrons.

2. Free atoms and 1ons with a partly filled inner shell: transition
clements; 1ons 1soelectronic with transition elements; rare earth
and actinide elements.

3. A few compounds with an even number of electrons, including
molecular oxygen and organic biradicals.

4. Metals.



Quantum Theory of Paramagnetism

Magnetic moment of free atom or 1on: n=yhJ =-guzJ J=L<+S
B ) Caution: J here 1s
y = gyromagnetic ratio. #p = Bohr magneton. dimensionless.
g — g factor. & My ==y 1 eh
Hy = 5 ~ spin magnetic moment of free electron
mc
For electrons g = 2.0023
] J(J+1)+S(S+1)—L(L+1)
For free atoms, g=1+ D
2J(J+1)
U=—n-B =m, g, B m, =—J, =T+l J—1,J
m, s
| e
For a free electron, L=0, S=%,g=2, - 5 Anomalous
- m,=x%, U=+u,B. N Zeeman effect
J Hp _...;_.é_ §
c 1.00
JV_ 8_’8 #E %
N = : Y P s v -—§| 0.75 Lower state
=7
050
i?\’TJr e BPuB g 0.25 Upper state
N - _ = 1 | t
N efHE o FuB 0 05 10 15 20

uB/ksT



Hund’s Rules

For filled shells, spin orbit couplings do not change order of levels.

Hund’s rule ( L-S coupling scheme ):
Outer shell electrons of an atom in its ground state should assume
1. Maximum value of S allowed by exclusion principle.
2. Maximum value of L compatible with (1).
3. J=|L-S| for less than half-filled shells.
J=L+S for more than half-filled shells.

Causes:

1. Parallel spins have lower Coulomb energy.

2. e’smeet less frequently if orbiting in same direction (parallel Ls).
3. Spin orbit coupling lowers energy for L-S < 0.

Mn**:  3d°> (1) — §=5/2 exclusion principle — L =2+1+0-1-2=0
Ced*:  4f1 L=3, §=1% (3) — J=|3—%|=5/2 *Fy),

Pt 42 (1) = S=1 () — L=3+2=5 (3) —J=|5-1|=4 °H,
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1. Use Hund'’s rule to deduce the order of atomic filling for d-orbitals (0 = 2).



4. Heat capacity from internal degrees of freedom. (a) Consider a two-level system
with an energy splitting kzA between upper and lower states: the splitting may arise
from a magnetic field or in other ways. Show that the heat capacity per system is

2 AT
aT [, (1 + &)

The function is plotted in Fig. 11. Peaks of this type in the heat capacity are often
known as Schottky anomalies. The maximum heat capacity is quite high, but for
T'< A and for T = A the heat capacity is low. (b) Show that for T = A we have
C = kp(ARTP +.... The hyperfine interaction between nuclear and electronic mag-
netic moments in paramagnetic salts (and in systems having electron spin order) causes

splittings with A = 1 to 100 mK. These splittings are often detected experimentally ltr}f
the presence of a term in 1/T* in the heat capacity in th&‘re:git}n T ;3 ﬁ.‘ Nl:.ll- ;]ear electric
quadrupole interactions with crystal fields also cause splittings, as in Fig. 12.



Chapter 12 Ferromagnetism and Antiferromagnetism

A ferromagnet has a spontaneous
SN NSNS magnetic moment in zero applied
| magnetic field.

Antiferromagnet

Ferrimagnetic ordering



Assume the exchange coupling between spin §i and §j Is J, Heisenberg
model has the energy of the system,

U =-2JS;-S,

Since U s the scalar product of the vector spin operators §i and §j, it
will favor parallel spins if J is positive and antiparallel if J is negative.

For a system with many spins, the total spin Hamiltonian is simply that
for the two-spin case, summed over all pairs of ions:

H®"=->"235 -S ., If
p=1

1. All magnetic ions are far enough apart that the overlap of their electronic
wave functions is very small.

2. When the angular momentum of each ion contains an orbital as well as

a spin part, the coupling in the spin Hamiltonian may depend on the absolute
as well as the relative spin orientations.



The approximate connection between the exchange integral J and the
Curie temperature T.. For the atom under consideration has z nearest
neighbors, each connected with the central atom by the exchange
coupling J. For more distance neighbors we take J as zero
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Magnons

A magnon is a quantized spin wave. Consider N spins each of magnitude
S on a line or a ring, with nearest neighbor spins coupled by the Heisenerg
Interaction:

N
U=-2J)S, -S...
p=1

If S, are classical vectors, then in the ground state S_-S ., = S* and

the exchange energy of the system is U, = —2NJS?.
For an excited state with one particular spin reversed, the total energy
increased by 8JS*, so that U, =U, +8JS°.

For the pth spin, we have —2JS (S, +S_.,).



Assuming traveling wave solutions of the form

S, =uexp[i(pka—wt)];S; =vexp[i(pka - wt)].

—iwu = (23S 1 B)[2 - (e +e"*)]v = (4JS / h)(1—coska)v;
—iwv=—(23S/h)[2—- (e +e"*)Ju =—(4JS | h)(L-coska)u;

1%, (4JS/h)(1—coska)l 9
—(4JS / 7)(L—coska) iw -
Therefore ho =4JS(1-coska).

At low momentum transfer and long wave lengths, we have
(1—coska) = %(ka)2

ho = (2J5a°)k?.



Antiferromagnetic Magnons

We obtain the dispersion relation of magnons in a one-dimensional anti-
ferromagnet by making the appropriate substitutions in the treatment
(16)—(22) of the ferromagnetic line. Let spins with even indices 2p compose
sublattice A, that with spins up (8* = S); and let spins with odd indices 2p + 1
compose sublattice B, that with spins down (8* = —S).

We consider only nearest-neighbor interactions, with | negative. Then
(18) written for A becomes, with a careful look at (17),

4%, /dt = (2]S/R)(=28Y, = Shy1 = Shyw) (45a)

The corresponding equations for a spin on B are

dsz, , Jdt = (S 2S5 + Sz Sopr2) : (46a)
dSY, . /dt = —(2] /)25 + Sz T Sio49) - (46b)

We form St = §* + i5¥; then

S (dt = (24]S/H)(2S5, + Szp-1 + Szpa) 5 (47)
dS5, . fdt = —(2]SH)(2S5per T S5 + Sapse) - (48)



Magnon energy fiw, in K
S 2

]
=

0 |
0 0.2 0.4

Wavevector k, in A~

Figure 23 Magnon dispersion relation in the simple cubic antiferromagnet RbMnF; as deter-
mined at 4.2 K by inelastic neutron scattering, (After C. G. Windsor and R. W. H. Stevenson.)




Chapter 13: Dielectrics and ferroelectrics

Polarization

1 3(p-r)r — 2
o - 3(p r}ﬁr P @_ﬂ__@

41I£,,:, r



Since the polarization of a medium—i.e., the alignment of the molecular moment—
is produced by the field, it is plausible to assume that the molecular moment is
proportional to the field. Thus we write

p=uad, (B.15)

where the constant « is called the polarizability of the molecule. The expression
(8.15) is expected to hold good, except in circumstances in which the field becomes
very large, in which case other terms must be added to (8.15) to form what is, in
effect, a Taylor-series expansion of p in terms of 4. Equation (8.15) may be re-
garded as the first term in this expansion. (Higher-order terms lead to nonlinear
effects.)

The polarization P can now be written as

P = Naé&, (8.16)

which, when substituted into (8.6), yields

N
D = & + Nad = ¢, (1 + —“) s 8.17)

€0
Comparing this result with (8.9), one finds

e, = 1 + (Nujfeg), (8.18)



(2) (b)

concerned (Fig. 8.5). The interaction of our dipole with the other dipoles lying
inside the cavity is, however, to be treated microscopically, which is necessary since
the discrete nature of the medium very close to the dipoles should be taken into
account. The local field, acting on the central dipole, is thus given by the sum

e =6+ &1 + &3 + &5, (8.24)

where &, is the external field, &, the field due to the polarization charges lying
at the external surfaces of the sample, &, the field due to the polarization charges
lying on the surface of the Lorentz sphere, and &4 the field due to other dipoles
lying within the sphere. Note that the part of the medium between the sphere
and the external surface does not contribute anything since, in effect, the volume
polarization charges compensate each other, resulting in a zero net charge in this
region,

\pter 2-28



Dielectric constant and polarizability

The dielectric constant ¢ of an isotropic medium relative
to vacuum is defined as

E +47P
E

g =1+4 7y

The polarizability « of an atom is defined in terms of the local
electric field at the atom:
p = aEIocaI

The polarization of a crystal is then

P=> N;p;= > Na,E.(j)
j j



The total polarizability can be separated into three parts:

1. electronic: arises from the displacement of the electron shell
relative to a nucleus.

2. 1onic: comes from the displacement of a charged ion with
respect to other ions.

3. dipolar: from molecules with a permanent electric dipole
moment that can change orientation in an applied electric field.



Show that the polarizability of a conducting metallic sphere

of radius a is = a°.

Figure 26 The total field inside a conducting sphere is zero. If
a field E, is applied externally, then the field E, due to surface
charges on the sphere must just cancel E,, so that E, + E, = 0
within the sphere. But E, can be simulated by the depolariza-
tion field —4#P/3 of a uniformly polarized sphere of polariza-
tion P. Relate P to E, and calculate the dipole moment p of the
sphere. In SI the depolarization field is —P/3¢;,.
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Heat capacity in units kg
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Figure 11 Heat capacity of a two-level system as a function of T/A, where A is the level splitting,
The Schottky anomaly in the heat capacity is a very useful tool for determining energy level split-
tings of ions in rare-earth and transition-group metals, compounds, and alloys.
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Figure 12 The normal-state heat capacity of gallium
at T < 0.21 K. The nuclear quadrupole (C o T™%) and
conduction electron (C e T) contributions dominate
the heat capacity at very low temperatures. (After
N. E. Phillips.)



