
Ch t 4 S

Solve lattice vibration equation of one atom/unit cell case

Chapter 4: Summary

Solve lattice vibration equation of one atom/unit cell case.
Consider a set of ions  separated by a distance ,M a


 for integral . Let ( ) be the displacement. 
Assuming only neighboring ions inter
R na n u na

act, we have

 21 ( ) ([ 1] ) ,
2

harm

n

U C u na u n a  

 

Newton's second law  or
( ) 2 ( ) ([ 1] ) ([ 1] )

harm

F Ma
du na UM C u na u n a u n a




   2 2 ( ) ([ 1] ) ([ 1] )

( )
M C u na u n a u n a

dt u na
       


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For each of the  values of  there are thus two solutions, 
leading to a total of 2  normal modes. The two  vs  curves 

N k
N kg

are two branches of the dispersion relation. Acoustic and optical
branches.
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Prob. 3, Consider a longitudinal wave cos( ) 
which propagates in a monatomic linear lattice of atoms of mass ,

su u t sKa
M

 

spacing , and nearest neighbor interaction . 
a) show that the total energy of 

a C
the wave is

   2 2
1

1 1/ ,
2 2s s s

s s

E M du dt C u u    
where  runs over all atoms.
b)By substitution of  in this expression, show that the time averages

s
u

 2 2 2 2 2

total energy per atom is 
1 1 11

s

M C K M  2 2 2 2 21 cos ,
4 2 2
where th

M u C Ka u M u   

e last step we have used the dispersion relation for this problem.
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Chapter 5: Summary

Planck distribution function:
Th it ti t # f ill t iThe average excitation quantum # of an oscillator is:

exp( / ) 1s n
n

 
   




exp( / ) exp( / ) 1
n

s    
 

   

4

At low temperatures,
1x        3

40 0
1 1

34

16 ,
1 15

nx
x

n n

xdx x e dx
e n

  

 

      

 

  
3412the heat capacity .

5V B
TC Nk

   
 
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Einstein models of the density of states

0In the case of  oscillators of the same frequency  in 1D,
the Einstein density of states is ( ) ( )

N
D N


    0

/

the Einstein density of states is ( ) ( )

.
1

D N
NU N n  

   


 

    
 


 /

2

1

The heat capacity

e

U eC N Nk

 



  

       




/ 2The heat capacity 

( 1)V B
V

C N Nk
T e  

         
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Thermal conductivityThermal conductivity

The thermal conductivity coefficient K of a solid is defined asThe  thermal conductivity coefficient K of a solid is defined as,

,  where  is the flux of thermal energy, andU U
dTj K j
dx

 

 is distance.  From the kinetic theory of gases we find
1 1

dx
x

21 1 ,  where  i
3 3

K Cvl Cv C  s the heat capacity per volume,

is the a erage particle elocit and is the mean freel
1

is the average particle velocity, and  is the mean free 
path of a particle between collisions,  is the phonon 
v l

 

collision rate.
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Chapter 6: Free electron Fermi gasChapter 6: Free electron Fermi gas

Under quantum theory and the Pauli exclusion principle, we consider
3 noninteracting electrons confined to a volume ( ).  If the wave function

of single electron is ( ),  then
N V L

r 

2 2 2 2

2 2 22m x y z
   

  
  

 2
2( ) ( ) ( ).

2
r r r

m
  


    


  

Applying boundary condition
( , , ) ( , , ); ( , , ) ( , , );x y z L x y z x y L z x y z      

2 2

( , , ) ( , , ). The solutions are 
1( ) ( ) Note the probability ofik r

x L y z L x y z
kr e k

 

 

  

 
  ( ) , ( ) . Note the probability of 

2

finding 

K r e k
mV

  

2
the electron somewhere in the volume is 1 ( ) .dr r 

 
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Note that ( ) is an eigenstate of the momentum operatorr Note that ( ) is an eigenstate of the momentum operator,

p ,

K

ik r ik r

r

e ke



  
   

 

     
 p ,

an electron in the level ( ) has a momentum p  and aK

i r i i r
r k

 


 




velocity p / / ,  where 2 / .
Periodi

v m k m k   




c boundary condition requiresPeriodic boundary condition requires
22 21 or , ,yx zik L yik L ik L x z

x y z

nn ne e e k k k
L L L

 
     

Thus in a 3-D -space, the allowed wavevectors are those along

x y zL L L
k

2the three axes given integer mutiples of .
L

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To calculate the allowed states in a region of -space volume ,

or the number of allowed -values per unit

k
V k


 

3 3 or the number of allowed -values per unit
(2 / ) (2 )
volume of -space (known as the -space density of levels) is 

k
L

k k
 



3 . Because
(2 )

V


 the electrons are noninteracting we can built up

the -electron ground state by placing electrons into the allowed
one-electron levels. Pauli exclusion principle allows each wavevector

N

to have 2 electronic levels with spins up and down.
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Since the energy of a one electron level is directly proportional
2

Since the energy of a one-electron level is directly proportional 
to ,   when  is enormous the occupied region will be indistinguishable
from a sphere The radius of this sphere is called (F for F

k N
k ermi)from a sphere. The radius of this sphere is called  (F for FFk

3

ermi),

and its volume  is 4 / 3. The # of allowed  within the sphere is:Fk k

 



3 3

3 2

4 . Since each allowed -value leads to two
3 8 6

F Fk kV V k
 

     
  

3 3

2 2one-electron levels, we must have 2 .
6 3

F Fk kN V V
 

 
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The sphere of radius  containing the occupied one eletron levels Fk
is called the Fermi sphere.
The Surface of the Fermi sphere, which separate the occupied form
the unoccupied levels is called the Fermi

1/32

 surface.

3The momentum of the occupiedNp k  
  The momentum =  of the occupied 

one-electron levels of  highest energy is the Fermi momentum.

F Fp k
V

  
 

 

2/32 2

g gy

3 N 2 2 3/ 2  is the Fermi energy; 
2F F

Nk m
m V


 

   
 




1/323/ ( )F F
Nv p m

V
 

   
 

  is the Fermi velocity.
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Experimental heat capacity of metalsExperimental heat capacity of metals

3At sufficient low temperatures, .  Where  is theVC T AT  

Sommerfeld parameter. The ratio of the observed to the free 
electron values of the electronic heat capacity is related to 
thermal effective mass as: 

(observed)thm 


(free)m 

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El t i l d ti it d Oh ’ lElectrical conductivity and Ohm’s law

Considering Newton's second law, we have 

1( )dv dkF E B
  

 ( )

The displacement of the Fermi sphere, / .

F m e E v B
dt dt c

k eEt

     

 



 


If collision time is , the incremental velocity is / .

In a constant e

v eE m  


lectric field and electrons per volume, theE n


In a constant e
2

2

lectric field  and  electrons per volume, the

electric current density is / .
The electrical conductivity /

E n

j nqv ne E m E
ne m

 

 

  



  

The electrical conductivity / .ne m 
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Thermal conductivity of metals
Wiedemann-Franz lawWiedemann-Franz law

Thermal conductivity for a Fermi gas
2 2 22

2

Thermal conductivity for a Fermi gas 
1
3 3 3

B B
el F

nk T nk TK Cvl v l
mv m

 
     

3 3 3
The Wiedemann-Franz law states that for metals at not
too low temperatures the ratio of the thermal conductivity

Fmv m

too low temperatures the ratio of the thermal conductivity
to the electrical conductivity is directly proportional to the
temperature independent of the particular metal

22 2 2

2

temperature, independent of the particular metal.

/ 3 .
/ 3

el B BK nk T m k T LT       
 2

8 2

/ 3
Lorenz number 2.45 10  watt-ohm/deg

ne m e
L

 


 
 

 
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Ch t 7 SChapter 7: Summary

Bloch’s theoremBloch s theorem

The eigenstates  of the one-electron Hamiltonian 
2

2 ( ) ,  where ( ) ( ) for all  in 
2

H U r U r R U r R
m

 
      
 

    

a Bravias lattice, can be chosen to have the form of a plane wave
times a function with the p

 

eriodicity of the Bravias lattice:p y

( ) ( ),  where ( ) ( )

f ll i th B i l tti

ik r
nk nk nk nkr e u r u r R u r

R

   
 

   
   


for all  in the Bravias lattice. or 

( ) ( )ik R

R

r R e r  
  
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The effect of a periodic potential

The periodic potential has form:
2 x

0 1

1 0 1

2cos ,  where  is lattice parameter

and .  If 0 then we have the free 

xU U U a
a

U U U


 

�1 0 1
2 2

electron gas case where 
2

k
m

  
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Wave equation of electron in periodic potential 

0 0
( ) ( ) 2 cosiGx iGx iGx

G G G
G G G

U x U e U e e U Gx

 

     
21( ) ( ) ( )

2
iGx

G
G

H p U e x x
m

      

2

( ) ( ) , 2 / .

1

ikx

k

x C k e k n L  
2 21 ( ) ( ) ,

2 2
( ) ( ) ( )

ikx

k
iGx iGx ikx

p x k C k e
m m

U e x U e C k e





 

 



2
2

( ) ( ) ( ) ,

( ) ( )

G G
G G k

ikx iGx ikx

U e x U e C k e

k C k e U e C k e C









 

  ( ) ikxk e( ) ( )
2 G

k G k
k C k e U e C k e C

m
  

2 2
2 2

( )

( ) ( ) ( ) 0 / 2

k
k e

k C k U C k G k m 





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Crystal momentum of an electron

Under a crystal lattice translation we have

( ) ( ) ( ).ik T ik r ik T
k k kr T e e u r T e r      

      

If the lattice potential vanishes, the result recovers
to that of free electron gasto that of free electron gas.

i ll d h lk


 f l is called the crystal k momentum of an electron. 

If an electron  absorbs in a collision a phonon of k


wavevector , the selection rule is ' .q k q k G  
   
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Approximate solution near a zone boundarypp y

At the zone boundary the kinetic energy of the wavesy gy
1  are equal. ( ) ( ) ( ) 0.
2 G

G
k G C k U C k G      
( ) ( / 2) ( / 2) 0
( ) ( / 2) ( / 2) 0

G

C G UC G
C G UC G

 
 
   
   

2
2 2 2

( ) ( / 2) ( / 2) 0
1( ) ;   ( ) .

2 2

C G UC G

U U G U
m

 

   



     


2 2
Thus the potential energy has cr

m
eated an energy gap 2  at

the zone boundary
U

the zone boundary.
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Chapter 8: Summary
A solid with an energy gap will be nonconducting at 0
unless electric breakdown occurs or unless the AC field is

T 

of such high frequency that  exceeds the energy gap.
However, when 0 some electronsT






will be thermallyHowever, when 0 some electrons T  will be thermally 
excited to unoccupied bands (conduction bands).
If the enegy gap 0 25 eV the fraction of electrons acrossE 

/ 2 2

If the enegy gap 0.25 eV, the fraction of electrons across

the gap is of order 10 ,  and observable conductivity g B

g

E k T

E

e 




will occur.  These materials are semiconductors.
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Effective Mass
1

2 2 2 2

The group velocity / , / ,  so / .

1 1 1 1
g gv d dk v d dk

dv d d dk d dk d F

   

   

  

        

 

2 2 2

2

1 1 1 1gdv d d dk d dk d F
dt dkdt dk dt dk dt dk

                      
        

 

    

2

* 2 2

1 1,  then we have .dF ma
m dk

 
   

 

Effective Mass in Semiconductors

cThe angular rotation frequency  of the current carriers

*
*is:      ,  where  is the effective mass.c

eB m
m c

 
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In an intrinsic semiconductor, , ,n p E E E  

 
3/ 2

3/ 4
2

In an intrinsic semiconductor, , , 

2 exp[( / 2 ].
2

g c v

B
e h g B

n p E E E

k Tn m m E k T   
 
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Chapter 9: Reduced zone scheme
'

' 'For a Bloch function written as ( ) ( ),  with '

outside the first Brillouin zone, we have ' .

ik r
k kr e u r k

k k G

 

 

   

  

 '
' ' '

outside the first Brillouin zone, we have .

( ) ( ) ( ) ( ) ( )ik r ik r iG r ik r
k k k k k

k k G

r e u r e e u r e u r r     



   
         
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Electron orbits, hole orbits, and open orbits

An electron on the Fermi surface will move in a curve on 
the Fermi surface because it is a surface of constant energythe Fermi surface, because it is a surface of constant energy. 
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Tight banding method for energy bands

Tight banding approximation deals with the case in which 
the ovelap of atomic wave functions is enough to requirethe ovelap of atomic wave functions is enough to require
corrections to the picture of isolated atoms, but not so 

h t d th t i d i ti i l tmuch as to render the atomic description irrelevant.
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Free electrons in a uniform magnetic fieldg

The orbital energy levels of an electron in a cubic box with sides
of length parallel to the - - and -axes are determined inL x y zof length  parallel to the , , and axes are determined in
the presence of a uniform magnetic field  along the -direction
by two

L x y z
H z

quantum numbers and :kby two

 
2

2

 quantum numbers,  and :

1( ) ,    .
2 2

z

z z c c

k

eHk k
m mc



      



2 2

 runs through all nonmagnetic integers, and  takes on the 
same values as in the absence of a magnetic field:

z

m mc
k

g
2 /  for any integral z zk n L n .

The energy of motion perpendicular to the field, which would
z

2 2 2

gy p p ,
be ( ) / 2  if no field were present, is quantized in

steps of ( / ) This is orbit quantization
x yk k m

eH mc 








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Origin of the oscillatory phenomena

   
Most electronic properties of metals depend on the density of levels

   at the Fermi energy, . It follows that  will be singular 
whenever the value of  causes an extramal orbit on the Fermi surface

F Fg g
H
 

 
4

to satisfy the quantization condition ( + ) ( ).
1 2 1 . 1.34 10 / .

e FA A
e e K G

  
 

 

     
 


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 
.   1.34 10 / .

e F B

K G
H c A mck

 
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For a system of N electrons at absolute zero the Landau levels
are filled to . Orbitals at the next higher level 1 will be partiallys s g p y
filled. The Fermi level will lie between  and 1. As the magnetis s  c
field is increased the electrons move to lower levels because the area

2

between successive circles are increased
( ) (2 )( ) 2 / .k k k eB c      
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