Chapter 4. Summary

Solve lattice vibration equation of one atom/unit cell case.
Consider a set of ions M separated by a distance a,

—

R = na for integral n. Let u(na) be the displacement.
Assuming only neighboring ions interact, we have

yrm = %CZ[u(na) —u([n +1]a)]2,

Newton's second law F = Ma or
y du(na)  oU™"
dt’ ou(na)

— —C[2u(na) - u([n—1]a) — u([n +1]a)]



For each of the N values of k there are thus two solutions,
leading to a total of 2N normal modes. The two @ vs k curves
are two branches of the dispersion relation. Acoustic and optical
branches.
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Prob. 3, Consider a longitudinal wave u, = ucos(ot — sKa)

which propagates in a monatomic linear lattice of atoms of mass M,
spacing a, and nearest neighbor interaction C.

a) show that the total energy of the wave is

E = % MY (du, /it +%CZ(US )

where s runs over all atoms.

b)By substitution of u, in this expression, show that the time average
total energy per atom is

1 2,2 1 2 1 2,.,2
ZMw u +EC(1—cosKa)u :EMQ) us,

where the last step we have used the dispersion relation for this problem.



Chapter 5: Summary

Planck distribution function:
The average excitation guantum # of an oscillator is:

Zsexp( nholz) 1
Zexp( sholz) exp(holz)-1

At low temperatures,

jdx(e _1) Zj x’e™™dx = GZ

n=1 nln

4 3
the heat capacity C, = 12;2 . (%) .



Einstein models of the density of states

In the case of N oscillators of the same frequency w, In 1D,
the Einstein density of states is D(w) = N6 (v —w,)

N7Zw
U = N <n>ha):(eha)/r _1j
The heat capacity C, = N (a—uj = Nk (h—a)jz ™
oT ), "Lz ) ("' =1
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T/6



Thermal conductivity

The thermal conductivity coefficient K of a solid is defined as,

Jy =-K z—T where J, Is the flux of thermal energy, and
X

X 1s distance. From the Kinetic theory of gases we find

K= }Cvl = %Cvzr, where C is the heat capacity per volume,

v Is the average particle velocity, and | is the mean free
path of a particle between collisions, =~ is the phonon
collision rate.



1. Singularity in density of states. (a) From the dispersion relation derived in Chap-
ter 4 for a monatomic linear lattice of N atoms with nearest-neighbor interactions,

show that the density of modes is
2N |

P

where w,, is the maximum frequency. (b) Suppose that an optical phonon branch
has the form @(K) = @,—AK®, near K =0 in three dimensions. Show that D{w) =
(L27 P (27/A ) (wy — @) for @ < w, and D(w) = 0 for @ > w,. Here the density

of modes is discontinuous.



Chapter 6: Free electron Fermi gas

Under guantum theory and the Pauli exclusion principle, we consider

N noninteracting electrons confined to a volume V (L*). If the wave function
of single electron is y(r), then
n(o° o° 0o° /-
— + + r)=——Vy(r)=csw(r).
Zm(axz PY: azz}l//( ) - y(r)=ey(r)
Applying boundary condition
y(x,y,z+L)=p Xy 2)w(xy+L2)=y(Xy,2);
w(Xx+L,y,z+L)=w(X,Y,z). The solutions are
i 1 r hok?
rN=——e"", gk)=
. (F) \N (k) om

finding the electron somewhere in the volume is 1= de|W(F)|2.

. Note the probability of




Note that w, () Is an eigenstate of the momentum operator,

;-—l a _ h h a eiIZ-F :h_’e”z'l_”

an electron in the level v, (r) has a momentum p = 7k and a

velocity V =p/m = sk /m, where A =27 /k.
Periodic boundary condition requires

27N
Zﬂnx,ky: T " _ 27n,
L L

Thus in a 3-D k-space, the allowed wavevectors are those along

et ="t =gt =1 ork =

. : 2
the three axes given integer mutiples of Tﬂ



To calculate the allowed states in a region of k-space volume Q,
Q Qv

2zIL)° (2x)°

volume of k-space (known as the k-space density of levels) is

or the number of allowed k-values per unit

Because the electrons are noninteracting we can built up

(27)*
the N -electron ground state by placing electrons into the allowed
one-electron levels. Pauli exclusion principle allows each wavevector

to have 2 electronic levels with spins up and down.



k\

Since the energy of a one-electron level is directly proportional

to k*, when N is enormous the occupied region will be indistinguishable
from a sphere. The radius of this sphere is called k. (F for Fermi),

and its volume Q is 477k? /3. The # of allowed k within the sphere is:

3 3
(MkF )( v j: sz V. Since each allowed k-value leads to two

3 87> 67
k? k?
one-electron levels, we must have N =2 F2 V = F2 V.
61 3T

If electron density is n= N /V, then we have n=k; /37°.



The sphere of radius k. containing the occupied one eletron levels
IS called the Fermi sphere.

The Surface of the Fermi sphere, which separate the occupied form
the unoccupied levels is called the Fermi surface.

37°N

1/3
The momentum p. =7k :h( j of the occupied

one-electron levels of highest energy is the Fermi momentum.

2 2 213
ge =h°kZ [2m= th [37\[/ N ] IS the Fermi energy;

5 1/3
Ve =p. /M= (z )(37\3 N j IS the Fermi velocity.



Experimental heat capacity of metals

At sufficient low temperatures, C, = yT + AT°. Where y is the
Sommerfeld parameter. The ratio of the observed to the free
electron values of the electronic heat capacity is related to
thermal effective mass as:

m,, _ y(observed)
m  y(free)

3.0
-
CIT = 2.08 + 2.57 T? N /‘

/.’.
Potassium "

CIT, in m}/mol-K®
b
o

0.1 0.2 0.3
T2, in K2



Electrical conductivity and Ohm’s law

Considering Newton's second law, we have
Eom® 9K o€+ lvxB)
dt dt C

The displacement of the Fermi sphere, 5k = —eEt /.

If collision time is 7, the incremental velocity is V = —eEz /m.
In a constant electric field E and n electrons per volume, the
electric current density is ] = nqvV = ne’Ez/m = oE.

The electrical conductivity o = ne’z/m.



Thermal conductivity of metals
Wiedemann-Franz law

Thermal conductivity for a Fermi gas
2 2 2 2

K, :lCVI 7z .nkB'zI' . _ kT
3 3 mvg 3m

v -l

The Wiedemann-Franz law states that for metals at not
too low temperatures the ratio of the thermal conductivity
to the electrical conductivity is directly proportional to the
temperature, independent of the particular metal.

21,2 2 2
Ka _7 nkgTT/3m 7 (kBj T=LT.
o ne‘z/m 3\e

Lorenz number L = 2.45x10~° watt-ohm/deg’



Chapter 7: Summary

Bloch’s theorem

The eigenstates y of the one-electron Hamiltonian

2
H = (_f_vz +U (r)j, where U (F + R) =U (F) for all R in
m

a Bravias lattice, can be chosen to have the form of a plane wave
times a function with the periodicity of the Bravias lattice:

=\ kT — = B\ _ —
y (F)=e""u (F), whereu (F+R)=u_-(F)

for all R in the Bravias lattice. or

= B\ _ kR

p(r+R)=e""w(r)




The effect of a periodic potential
The periodic potential has form:

27T X : :
U=U,+U, cos<"Z | where a is lattice parameter

a

and U, J U,. If U, =0 then we have the free
21,2

electron gas case where ¢ =
2m

Second
allowed




Wave equation of electron in periodic potential

U(X) = ZU '™ =>"U, (e +e7)=2> U, cosGx

G>0 G>0
Hy = ey = (2— P’ + > Uge ™) (x) =sp(x)
m G
w(x) =Y C(k)e"™ k=2zn/L.
k

1 oy K
— X)=— > k“°C(k)e™,
S Py (%) ZmZk: (k)

(ZUGeiGX)W(X) :Z ZUGeiGXC (k)eikx ’

> th k’C(k)e™ +ZZU e'**C(k)e™ —gZC(k)e"‘X

k

hk?
(2m

—&)C(k)+ > UC(k-G)=0. A =n’k*/2m.



Crystal momentum of an electron

Under a crystal lattice translation we have

w, (T).

v, (F+T)=e"Te"u, (F+T)=e""

If the lattice potential vanishes, the result recovers
to that of free electron gas.

7k is called the crystal momentum of an electron.
If an electron k absorbs in a collision a phonon of

wavevector g, the selection rule isk + g =k '+ G.



Approximate solution near a zone boundary

At the zone boundary the Kinetic energy of the waves
- %G are equal. (A —£)C (k) + > UC(k —G) =0.
G

(1-¢)C(G/2)+UC(-G/2)=0
(1-¢)C(-G/2)+UC(G/2)=0
hZ
2m
Thus the potential energy has created an energy gap 2U at
the zone boundary.

(A-g)"=U?% e=1+U = (%G)ZiU.



Chapter 8: Summary
A solid with an energy gap will be nonconductingat T =0
unless electric breakdown occurs or unless the AC field is
of such high frequency that Zw exceeds the energy gap.
However, when T = 0 some electrons will be thermally
excited to unoccupied bands (conduction bands).
If the enegy gap E, ~ 0.25 eV, the fraction of electrons across

. —E. /2k _ - .
the gap is of order e '**" ~107?, and observable conductivity
will occur. These materials are semiconductors.

1L8

g(€) 8(&)

(a) (b)



Effective Mass

The group velocity v, =dw/dk,w=&/h, sov, =h"de/ dk.

dv, 1d% 1(d’sdk)_1 d%\(dkj_i d’ (F]

dt 7 dkdt 7l dk® dt h dk2/ dt Al dk® )\ &
2 0

F =ma, then we have 1*: 12 df .

m h dk )

Effective Mass in Semiconductors

The angular rotation frequency @, of the current carriers

: eB . :
IS: @, =——, Where m s the effective mass.
mec



In an intrinsic semiconductor,n=p,E, =E_—E,

KT o2 3/4
n=2 (m.m, )" exp[(E, / 2k, T].
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Chapter 9: Reduced zone scheme

=~

u.(F), wi
K'+G.

For a Bloch function written as y,.(I') =€

outside the first Brillouin zone, we have k

— eik-f' e—iG-f'ukI F e'kTUk (fr) _ Wk '—;

€x

W, (F)=

First Brillouin zone
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Electron orbits, hole orbits, and open orbits

An electron on the Fermi surface will move in a curve on

the Fermi surface, because it is a surface of constant energy.

B out
of paper

Electron orbit
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Tight banding method for energy bands

Tight banding approximation deals with the case in which
the ovelap of atomic wave functions is enough to require
corrections to the picture of isolated atoms, but not so
much as to render the atomic description irrelevant.

/L A
® e
(a)

A SANG "o
*® L * ¢
(c)

(b)



Free electrons in a uniform magnetic field

The orbital energy levels of an electron in a cubic box with sides
of length L parallel to the x-, y-, and z-axes are determined in
the presence of a uniform magnetic field H along the z-direction
by two quantum numbers, v and K, :

g, (k,) :h—zkf +(v+1)ha)c, o, _e1
2m 2 mc

v runs through all nonmagnetic integers, and k, takes on the

same values as in the absence of a magnetic field:

k, =2zn, /L for any integral n,.

The energy of motion perpendicular to the field, which would

be 7 (k; +k;)/2m if no field were present, is quantized in

steps of 7w, (@, =eH /' mc). This is orbit quantization.



Origin of the oscillatory phenomena

(a) (b) (©)

Most electronic properties of metals depend on the density of levels

at the Fermi energy, g (& ). It follows that g (& ) will be singular
whenever the value of H causes an extramal orbit on the Fermi surface

to satisfy the quantization condition (v+A4)AA = A (&;).
A( 1)—27’6 ! o1 _134x10*K/G.

H) nc A(s)  mek,



(a)

For a system of N electrons at absolute zero the Landau levels

are filled to s. Orbitals at the next higher level s+1 will be partially
filled. The Fermi level will lie between s and s +1. As the magnetic
field is increased the electrons move to lower levels because the area
between successive circles are increased

7A(K?) = (27k)(AK) = 27€B | ic.



