Introduction

The PASCO Model CI-6605 Stainless Steel Temperature Sensor is used for measuring the temperature of liquids (such as water and mild chemical solutions), air, and other materials. The temperature can be measured in degrees Celsius, Fahrenheit, or Kelvin. The sensor consists of a stainless steel probe, a 3-foot cable, and an 8-pin connector.

The CI-6605 consists of a thermistor built into a stainless steel tube. The thermistor allows for resistance measurements in Kohms. A precision voltage reference and reference resistor are built into the 8-pin DIN connector.

Equipment included:

• Stainless Steel Temperature Sensor (CI-6605)
• Plastic Tubing Cover, 0.5 ft. (640-038)
• Teflon Cover (699-075)

Additional equipment required:

• ScienceWorkshop® Interface
• DataStudio® Software, (version 1.8 or later)

Applications:

• General purpose temperature measurements
• Observing freezing and boiling points and/or heat of fusion
• Environmental monitoring (terrariums, weather, and soil studies)
• Chemical kinetics and reaction rates
• Biochemical and enzymatic reactions
• Microbiology studies

Specifications:

Temperature range: -35°C to +135°C, -31°F to +275°F
238 to 408 K
Accuracy: ±0.5°C or better
Resolution: 0.05°C
Probe composition: #304 stainless steel

© 2003 PASCO scientific
Sensor Electronics and Internal Circuitry

The Thermistor used is a typical 10K thermistor with a negative temperature coefficient. It is called a 10K thermistor because the resistance value at standard temperature (25°C) is 10K ohms. As the temperature increases, the resistance of the thermistor decreases.

Figure 1 illustrates a typical resistance vs. temperature curve for a thermistor.

![Figure 1: Temperature vs. Resistance](image)

The 10K thermistor circuit uses a precision voltage reference and a voltage divider to determine the thermistor’s resistance. The thermistor (Rt) is one resistor and a 13K resistor (Rref) is the other in a two-resistor voltage divider network. The voltage reference is connected to the top of the divider network and the voltage output is taken from the middle of the divider.

The relationship of the 10K thermistor’s resistance (Rt) to the voltage output (Vout) is:

\[
\frac{V_{out}}{V_{in} - V_{out}} = \frac{R_t}{R_{ref}}
\]

where V_in is the reference voltage, 10VDC and R_ref is 13K ohms.

The Steinhart-Hart equation is used to convert from resistance to temperature. Temperature (T) in degrees Celsius is:

\[
\frac{1}{(3.35 \times 10^{-3} + 2.56 \times 10^{-4} \ln(R_{10}) + 2.38 \times 10^{-6} \ln(R_{10})^2 + 8.37 \times 10^{-8} \ln(R_{10})^3)} = 273.15
\]

where R10=Rt/10,000.

DataStudio software converts the voltage to resistance and the resistance to temperature.

Equipment Setup (for data collection)

Note: The sensor is very accurate and generally does not need to be calibrated.

1. Plug the sensor’s DIN 8-pin connector into any analog channel (A, B, or C) on a ScienceWorkshop interface.

2. Open DataStudio. In the Welcome to DataStudio window, double click “Create Experiment.”

3. CAUTION: Do not place the Stainless Steel Temperature Sensor in a direct flame or on a hot plate. To prevent damage to the sensor, do not exceed the range of -35°C to +135°C.

3. In the Sensors list of the Experiment Setup window, click and drag the Stainless Steel Temperature icon to the analog channel in which you have your sensor connected.

4. To change measurement units or view resistance values, double click on the Stainless Steel icon in the Setup window. In the Measurement tab, select the desired measurement unit (°C,°F, K, or Kohms) and click the OK button.

5. Place the end of the probe in the solution, gas, or object you are measuring.

6. WARNING: To avoid burns or bodily injury, do not touch the end of the probe with your hand, fingers, etc. when measuring temperatures of hot liquids, materials, etc.

6. In DataStudio, open a display and click the Start button.
Using the Temperature Sensor with DataStudio Workbook Activities

Note: If you are using the Stainless Steel Temperature Sensor (SST) with a pre-existing DataStudio activity file or workbook for a different type of temperature sensor, do the following:

1. In the Setup window, click on and delete the existing Temperature Sensor icon.
2. In the sensors list, scroll to the SST Sensor icon. Click and drag the SST icon to an analog channel on the picture of the interface.
3. From the Data list, drag the SST icon to any open displays.

Using the Temperature Probe in Chemical Solutions

The Stainless Steel Probe can be used in basic and mildly acidic solutions. Use a Teflon cover when placing the Stainless Steel Temperature (SST) probe in strong acids or chemical solutions that may damage the probe. When a Teflon cover is used, the probe can be placed in most chemical solutions. The Teflon cover will not change the temperature reading, but the sensor’s response to changes in temperature will be slower than when the cover is not used.

*Teflon is DuPont’s registered trademark for its fluoropolymer resins.

CAUTION: Without the Teflon cover over the probe, do not use the probe in the following chemicals: Acetic Acid, Aluminum halides, Hydrochloric Acid, Iodine, Nitrating Acid, Phosphoric Acid, and Sulfuric Acid. For more information about chemical compatibility with #304 stainless steel, see the Cole-Parmer web site (www.coleparmer.com/techinfo).

Using the Temperature Sensor with a pH, Dissolved Oxygen, or Conductivity Sensor

The Stainless Steel Temperature Sensor is electrically grounded. Use the Teflon sleeve to isolate the probe of the Stainless Steel Temperature Sensor when it used with electrically susceptible sensors, such as the pH (CI-6507A) and Conductivity Sensor (CI-6729).

Using the Temperature Probe in Air-Tight Containers

The diameter of the sensor’s stainless steel probe is slightly smaller than the 1/4-inch hole found in many rubber and cork stoppers. If an airtight seal in a stopper is required, the diameter of the stainless steel probe must be increased. Two 3-inch pieces of plastic tubing are included with the Stainless Steel Temperature Sensor for this purpose.

The tubing may be trimmed as required. A little bit of glycerine may be used on the tubing to assist in the process of slipping the tubing over the probe. For the best temperature response, place the tubing and stopper as close to the probe handle as is practical.

![Figure 3: Probe with stopper and tubing](image-url)
Limited Warranty

PASCO scientific warrants the product to be free from defects in materials and workmanship for a period of one year from the date of shipment to the customer. PASCO will repair or replace, at its option, any part of the product which is deemed to be defective in material or workmanship. The warranty does not cover damage to the product caused by abuse or improper use. Determination of whether a product failure is the result of a manufacturing defect or improper use by the customer shall be made solely by PASCO scientific. Responsibility for the return of equipment for warranty repair belongs to the customer. Equipment must be properly packed to prevent damage and shipped postage or freight prepaid. (Damage caused by improper packing of the equipment for return shipment will not be covered by the warranty.) Shipping costs for returning the equipment after repair will be paid by PASCO scientific.

Address: PASCO scientific
10101 Foothills Blvd.
Roseville, CA 95747-7100

Phone: (916) 786-3800
FAX: (916) 786-8905
e-mail: techsupp@pasco.com
Web site: www.pasco.com

Copyright Notice

The PASCO scientific 012-08060A Stainless Steel Temperature Sensor Manual is copyrighted and all rights reserved. However, permission is granted to non-profit educational institutions for reproduction of any part of the 012-08060A Stainless Steel Temperature Sensor Manual, providing the reproductions are used only for laboratories and are not sold for profit. Reproduction under any other circumstances, without the written permission of PASCO scientific, is prohibited.

Note: This instruction sheet was written assuming that the user is familiar with DataStudio software. Users can gain familiarity with the software by working through the tutorials provided with the DataStudio compact disk or online help.

The exclamation point within an equilateral triangle is intended to alert the user of important operating and safety instructions that will help prevent damage to the equipment or injury to the user.