Skip to content
jaan mannik
Jaan Mannik
Professor

Cellular Biophysics
Office: 406B Nielsen Physics Building
Phone: (865) 974-6018
Fax: (865) 974-7843
jmannik@utk.edu | Mannik Group Page


For Prospective Students

Open position available for a postdoctoral researcher and for a graduate student to study how cell division proteins and chromosomes self-organize in a bacterial cell.


Brief Vita
  • 2022-current Professor at the University of Tennessee, Knoxville. Research on bacterial biophysics. Teaching undergraduate and graduate courses.
  • 2017-2022 Associate Professor at the University of Tennessee, Knoxville. Research on bacterial biophysics. Teaching undergraduate and graduate courses.
  • 2011-2017 Assistant Professor at the University of Tennessee, Knoxville. Research on bacterial biophysics. Teaching undergraduate and graduate courses.
  • 2007-2011 Postdoctoral researcher at Kavli Institute of Nanoscience, Delft University of Technology, the Netherlands. Research on carbon nanotube biosensors. Research on bacterial biophysics using nanoscale environments.
  • 2005-2006 Postdoctoral researcher at University of California, Irvine. Research on carbon nanotube biosensors.
  • 2003-2005 Postdoctoral researcher at Stony Brook University, NY. Research on rf-SQUID based quantum bits.
  • 2003 PhD in Physics from Stony Brook University, NY. Thesis research on superconducting single electron (Cooper pair) transistors.

Full CV


Research
    • Understanding self-organizing processes in a bacterial cell. The processes which are of my particular interests are self-asembly of cell division proteins, segregation and organization of chromosomal DNA, and regulation of bacterial cell cycle. My group uses both experiment and numerical modelling to address questions related to these processes.
    • Development of micro- and nanofabricated microfluidic devices for studies of bacterial cells. Development of electrical and mechanical actuators and sensors interfacing cells on such lab-on-a-chip devices.
    • For further details see Laboratory of Cellular Biophysics (the Männik Lab)
    • This research is supported by funding from NSF Career award, US-Israel Binational Science foundation, and NIH R01 award


Teaching
  • Fall 2021-2022: Modern Physics Lab (PHY 461)
  • Spring 2018-20: Modern Optics (PHY 421)
  • Fall 2016-18: Electronics Lab (PHY 361)
  • Spring 2016-17: Thermal Physics (PHY 321)
  • Spring 2014: Biophysics (PHY642/PHY490)
  • Fall, Spring 2011-14: Elements of Physics (PHY 221, PHY222)

Selected Publications
  1. Cell cycle-dependent recruitment of FtsN to the divisome in Escherichia coli, Jaana Männik, S. Pichoff, J. Lutkenhaus, J. Männik, mBio 13 (2022) e02017-22. doi:10.1128/mbio.02017-22
  2. Coupling between DNA replication, segregation, and the onset of constriction in Escherichia coli, S. Tiruvadi-Krishnan, Jaana Männik, P. Kar, J. Lin, A. Amir, J. Männik, Cell Reports 38 (2022) 110539. doi:10.1016/j.celrep.2022.110539
  3. Distinguishing different modes of growth using single-cell data, P. Kar, S. Tiruvadi-Krishnan, J. Männik, J. Männik, A. Amir, eLife 10 (2021) e72565. doi:10.7554/eLife.72565
  4. Lab-on-a-chip based mechanical actuators and sensors for single-cell and organoid culture studies, J. Männik, T. F. Teshima, B. Wolfrum, D. Yang, J. Appl. Phys. 129, 210905 (2021). doi: 10.1063/5.0051875
  5. Transient membrane-linked FtsZ assemblies precede Z-ring formation in Escherichia coli, B. E. Walker,J. Männik, J. Männik, Cur. Biol. 30 (2020) 499. doi: 10.1016/j.cub.2019.12.02
  6. Cell cycle-dependent regulation of FtsZ in Escherichia coli in slow growth conditions, J.Männik, B. E. Walker, J. Männik, Mol. Microbiol. (2018) (early edition) doi:10.1111/mmi.14135.
  7. Analysis of factors limiting bacterial growth in PDMS mother machine devices, D. Yang, A. D. Jennings, E. Borrego, S. T. Retterer, J. Männik Front. Microbiol. 9 (2018) 871. doi: 10.3389/fmicb.2018.00871.
  8. Kinetics of large-scale chromosomal movement during asymmetric cell division in Escherichia coli, J.Männik, M. W. Bailey, J. C. O’Neill, J. Männik, PLOS Genetics 13 (2017) e1006638. doi: 10.1371/journal.pgen.1006638.
  9. The role of MatP, ZapA, and ZapB in chromosomal organization and dynamics in Escherichia coli. J. Männik, D. E. Castillo, D. Yang, G. Siopsis, and J. Männik, Nucleic Acids Res. 44 (2016) 1216. doi: 10.1093/nar/gkv1484.
  10. Spatial coordination between chromosomes and cell division proteins in Escherichia coli. J. Männik and M. W. Bailey Front. Microbiol. 6 (2015) 306. doi: 10.3389/fmicb.2015.00306.
  11. Evidence for divisome localization mechanisms independent of the Min system and SlmA in Escherichia coli, M. W. Bailey, P. Bisicchia, B. T. Warren, D. J. Sherratt and J. Männik, PLoS Genet. 10 (2014) e1004504. doi:10.1371/journal.pgen.1004504.
  12. Robustness and accuracy of cell division in Escherichia coli in diverse cell shapes, J. Männik, F. Wu, F. J. H. Hol, P. Bisicchia, D. Sherratt, J. E. Keymer and C. Dekker, Proc. Natl. Acad. Sci. U. S. A. 109 (2012) 6957.
  13. Influence of electrolyte composition on liquid-gated carbon-nanotube and graphene transistors, I. Heller, S. Chatoor, J. Männik, M. A. G. Zevenbergen, C. Dekker, and S. G. Lemay, J. Am. Chem. Soc. 132 (2010) 17149.
  14. Bacterial growth and motility in sub-micron constrictions, J. Männik, R. Driessen, J. E. Keymer and C. Dekker, Proc. Natl. Acad. Sci. U. S. A. 106 (2009) 14861.
  15. Optimizing the signal-to-noise ratio for biosensing with carbon nanotube transistors, I. Heller, J. Männik, S. G. Lemay and C. Dekker, Nano Lett. 9 (2009) 377.
  16. Charge Noise in Liquid-Gated Single-Wall Carbon Nanotube Transistors, J. Männik, I. Heller, A. M. Jannsens, S. G. Lemay and C. Dekker, Nano Lett. 8 (2008) 685.
  17. Identifying the Mechanism of Biosensing with Carbon Nanotube Transistors, I. Heller, A. M. Jannsens, J. Männik, E. D. Minot, S. G. Lemay and C. Dekker, Nano Lett. 8 (2008) 591.
  18. Chemically Induced Conductance Switching in Carbon Nanotube Circuits, J. Männik, B. R. Goldsmith, A. A. Kane and P. G. Collins, Phys. Rev. Lett. 97 (2006) 016601.
  19. Crossover from Kramers to Phase-Diffusion Switching in Moderately Damped Josephson Junctions, J. Männik, S. Li, W. Qiu, W. Chen, V. Patel, S. Han, J. E. Lukens, Phys. Rev. B71 (2005) 220509.
  20. Effect of Measurement on the Periodicity of the Coulomb Staircase of a Superconducting Box, J. Männik and J. E. Lukens, Phys. Rev. Lett. 92 (2004) 057004.

 

 

The flagship campus of the University of Tennessee System and partner in the Tennessee Transfer Pathway.