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Basic idea 
 
 The Hall effect is basic to solid-state physics and an important diagnostic tool for 

the characterization of materials – particularly semi-conductors. It provides a direct 

determination of both the sign of the charge carriers, e.g. electron or holes (appendix A), 

and their density in a given sample.   

The basic setup is shown in Fig. 1:  A thin strip (thickness δ) of the material to be 

studied is placed in a magnetic field B oriented at right angles to the strip. 

 
Fig. 1:  Hall effect geometry.  This arrangement corresponds to our laboratory setup. 



 

A current I is arranged to flow through the strip from left to right, and the voltage 

difference between the top and bottom is measured.  Assuming the voltmeter probes are 

vertically aligned, the voltage difference is zero when B = 0.   

The current I flows in response to an applied electric field, with its direction 

established by convention.  However, on the microscopic scale I is the result of either 

positive charges moving in the direction of I, or negative charges moving backwards.   In 

either case, the magnetic Lorentz force Bv ×q  causes the carriers to curve upwards.  

Since charge cannot leave the top or bottom of the strip, a vertical charge imbalance 

builds up in the strip.  This charge imbalance produces a vertical electric field which 

counteracts the magnetic force, and a steady-state situation is reached.  The vertical 

electric field can be measured as a transverse potential difference on the voltmeter. 

Suppose now that the charge carriers where electrons ( eq −= ).  In this case 

negative charge accumulates on the strip’s top so the voltmeter would read a negative 

potential difference.  Alternately, should the carriers be holes ( eq += ) we measure a 

positive voltage. 

The above argument provides a simple picture in which to think about the Hall 

effect — and in fact leads to the correct answer.  However, it presupposes a steady 

current of charge carriers flowing in the conductor, all in a single direction with constant 

speed.  Why, for instance, don’t the carriers accelerate?  The true nature of macroscopic 

conduction is a bit more complicated, relying on a statistical average over individual 

carrier’s motions.  In the next section we will briefly look at this issue. 



 

2. The Drude theory and the Hall effect 
 
 
 Before considering the effect of magnetic fields on conductors, we need some 

model to describe the flow of currents in response to electric fields.  To do so we will use 

the Drude theory of conductors.  This is a simple classical model, and many of its 

concepts extend to the quantum case.  A more careful account of the Drude model can be 

found in the first chapter of “Solid State Physics” by Ashcroft and Mermin. 

The Drude model envisions a conductor as a gas of free current-carrying charges.  

The freely moving carriers suffer randomizing collision events on average every τ 

seconds.  The parameter τ  is called the relaxation time, and is the only feature describing 

the (otherwise unspecified) collision events. 

 

 
 

Fig. 2:  Example of a charge carrier’s random trajectory over four collision times. 

 

Figure 2 indicates the basic idea.  The solid black lines show a specific trajectory of a 

charge carrier in the absence of any external force.  It proceeds with some constant 

thermal velocity in some direction until it experiences a collision, whereupon its speed 

and direction change randomly. The red dashed lines indicate how each of these 



trajectories would be influenced by an external force F.  When these paths are assembled, 

we see a net displacement Δx over time 4τ  in the direction of the force; the particle has 

begun to ‘drift’ in the direction of F. 

 For macroscopic quantities, only averages over all particles are of interest. With 

the above assumptions, one can obtain an equation of motion for the average momentum 

P, given by 
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Here, P is interpreted as follows: for a group of charge carriers all having a 

specific momentum P0 at t = 0,  the average momentum P of the group evolves in time 

like a single carrier subject to the average external force F per particle, but subject to 

resistive damping.  This damping is a consequence of the random collisions; when τ is 

small collisions are rare, and the actual trajectories all coincide with the average P. 

For a constant force a terminal momentum is reached — independent of the initial 

conditions.  This is in complete analogy with the motion of an object falling through air: 

the object either speeds up or slows down enough so that the air-resistance counteracts its 

weight.  In our case P becomes constant in time as FP τ→ .  Thus, if we apply a force F 

and wait ‘long’ enough, a steady state develops where, on average, each particle drifts 

with a constant speed in the direction of F. 

In response to a constant electric field ( EF q= ) a constant current of charge 

carriers is established.  The current density J is the average charge crossing an (oriented) 

area per unit time.  If there are n charge carriers per unit volume with average (drift) 

velocity , the associated current density is m/PV = mqnqnq /EVJ τ×== .  Thus, we 

arrive at Ohm’s law  
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where σ is the conductivity, and σρ /1=  the resistivity, of the material. 
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Note that ρ is inversely proportional to the relaxation time.  Since we expect that τ 

decreases with increasing temperature (carrier collisions occur more often), we expect a 

metal’s resistance to increase with temperature (which it does). 

 Now, consider what happens when we apply a magnetic field B to a thin strip of 

material in which a current I is flowing, as shown in Fig. 3. 

 

 
Fig. 3:  Hall effect geometry again; the strip has a thickness δ, length l, and height h. 

 

Here, the applied field B is directed only in the z direction (into the paper).  The x-

component of E drives the steady current I in the x direction, and a y-component of E 

must appear to balance the Lorentz force on the charge carriers:  The equation of motion 

(in SI units) is  

[ ]BVEVV
×+=+

m
q

dt
d

τ
1 . 

 

Again, when a steady current flow is established the time derivative of V at each 

point vanishes1.  Multiplying the above by qnτ , the time-independent result can be 

written in terms of J as  

                                                 
1 Remember that V is not the velocity of a given particle at a point, but an average.  Note that F is a 
velocity-dependant force. When averaged the single-particle velocity v is replaced by the average V. 
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With the setup shown in Fig. 3 steady current can only flow in the x direction , 

while .   Performing the cross product and resolving into components gives 

xJ ˆJ=

zB ˆB=
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Along with Ohm’s law describing current flow along the strip, we now have a component 

to the electric field in the transverse direction — proportional to J and B.  The Hall 

Coefficient, RH, is officially defined as this proportionality constant: 

 

JBRE Hy = . 

 

The Drude model thus predicts  
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The Hall coefficient thus gives a direct indication of the sign of the charge carriers; it is 

negative for electrons ( ) and positive for holes (eq −= eq += ).  Note its independence of 

the our model parameter τ :  it turns out from a quantum mechanical analysis of the 

problem that this formula generalizes to a wide class of materials.  Note also that the Hall 

field is large for low carrier concentrations: we might expect that the effect will be harder 

to detect in metals than in semi-conductors.   

 The Hall field Ey can be measured by the voltage difference between points a and 

b (Fig. 3) since , where h is the sample height.  The total current 

flowing through the strip is 

hEVVV ybaH =−=Δ

)( δhJI ×= .  Thus, in terms of laboratory quantities we have 

the equivalent definition of RH in terms of the Hall voltage and the current: 
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Where, again, δ is the thickness of the strip.  As we reasoned from the mechanics of Fig. 

1, the Hall voltage-difference is negative for electron carriers and positive for hole 

conduction.   

 The SI units the Hall coefficient is (volt m)/(amp tesla) or m/TΩ , however RH  is 

often reported in hybrid units such as (volt cm)/(amp gauss).  One tesla [ T — equal to 

one (newton sec)/(coulomb m) ] is equivalent to ten kilogauss (kG). 

Here is a list of values for some common elemental conductors 

 

Element RH   (10-12 Ω cm/G) ρ   (μΩ cm) @ 20C 

Ag    – 0.8  1.63 
Al    – 0.4  2.67 
Au    – 0.7  2.20 
Co   + 2.5   6.34 
Cu   – 0.5   1.69 
Fe  + 11.0 10.1 
Mg    – 0.9  4.2 
Mo   + 1.3  5.7 
Ni   – 5.1  6.9 
Sb +200.0 40.1 
W   + 1.2  5.4 
Zn   + 1.0    5.96 

 

 

These values should be regarded as characteristic; real-world values of RH  are dependant 

on a number of parameters such as temperature, sample purity, and even magnetic field. 

 Determination of RH and ρ  provide some insight into the nature of conduction in 

solids.  As an example, consider room-temperature silver with   
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The negative Hall coefficient indicates that electrons are the charge carriers.  From its 

magnitude, we can derive the carrier concentration 
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We can compare this with the density of Ag atoms, which we find from its density of 

10.5 gm/cm3 and mass number 107.87 gm/mole.  These values give an atomic density of 

.  We see there is about one (1.3) conduction-electron/atom, more-or-less 

in keeping with what we might expect from Ag’s 5s

-322 cm 10  5.9×
1 valence configuration.    

This simple expectation that atomic valence electrons provide the conduction 

carriers breaks down for most metals, e.g. a similar calculation for Be (valence 2s2) yields 

0.2 holes/atom! 

The relaxation time can be found from the resistivity and the carrier concentration 
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Here, in keeping the free-electron model, we’ve used the electron mass rather than an 

effective mass (see App. A).  This is the average time between scattering events for the 

electrons conducting the current.   

This gives us some insight into the scattering mechanism (at least within our 

Drude model).  The mean free path, , is the average distance an electron travels 

between collisions.  We can estimate this from the average thermal velocity of an 

electron at room temperature ( ).  For room temperature (300K) this is 

, and so 

kTmvT 22 =

m/s105.9 4×=Tv

m107.2 9−×=≈ τTv . 

 



Hence the electron travels about 27 Å between collisions.  This is larger than our 

expectation of the Ag atomic spacing ( Å).  The quantum mechanical model 

shows that the principle scattering mechanism is not the atomic lattice sites, but the 

interaction with vibrations of the lattice (phonons). 

5.23/1 =≈ −n

What is the drift velocity of the carriers?  This depends on the electric field 

applied.  Suppose we apply a familiar field, say 100 V/m – this is the field we would have 

by placing a 1 V potential difference across a 1 cm length of material.  The drift velocity 

in this case would be 

 

m/s 49.0/ == mqEV τ ! 

 

Notice how slow the average drift is to the thermal speed.  This gives some 

justification in defining τ  independently of V.  The applied forces barely perturb the 

actual trajectories, so that Fig. 2 is highly exaggerated. 

 



 

3. Measuring the Hall Coefficient in Metals 
 

 On the practical side of things, consider actually measuring the Hall Voltage 

using the geometry of Fig. 2.   To this end we have a number of metallic foils soldered to 

specially constructed circuit boards. Figure 4 shows our aluminum sample obtained from 

a piece of kitchen foil (burnished to thin it as much as possible): 

 

 
Fig. 4:  Hall-effect sample mounted on its board.  The sample is about 25mm square with 

a thickness of 0.02 mm. 

 

A foil current is passed through the sample (left to right in the photo) via the 5-wire 

harnesses.  This arrangement keeps the current flow in the foil spatially uniform.  The 

transverse Hall voltage is measured on the twin red/black leads.  

 The measured voltage will be small.  Our magnet attains a field strength of about 

10 kG.  For a foil thickness δ = 0.02mm then we expect a Hall voltage on the order of 20 

μV.   This is a very small potential to measure and we employ a very good DVM (Fluke 

model 45) on its most sensitive scale (resolution of 1 μV). 



In measuring the potential difference between points a and b (Fig. 2) the voltage 

probes will not be precisely aligned vertically.  The actual situation will be more like that 

of figure 4: 

 

 
Fig. 5:  Horizontal offset (γ) of Hall voltage measurement points. 

 

The resistance of the area between a and b is δργ hR /= , so that a potential difference 

IR exists along the strip.  Thus, an offset voltage (proportional to the current) occurs in 

our Hall measurement: 
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Using again our Al example, if there was an effective mismatch of the probes by 0.5 mm, 

the resistance would be 27 μΩ causing an offset 270 μV at 10 A foil current.  This offset 

is large compared to the actual Hall voltage.  Our scheme will be to fix the foil current I, 

and scan the magnetic field.  A linear fit of baV ,Δ  vs. B will then have a slope of 

δ/IRH . 

 



Procedure 
 

1.  Read appendices B and C, which will give you an overview of how the magnet and 

scan are controlled.  

 

2.    Choose a metal-foil sample, and attach it to the aluminum sample holder by two or 

three nylon screws.   Attach the five-wire current leads to the circuit board (copper side to 

copper side) as in Fig. 3 (also with the nylon screws provided).  Be sure to maintain the 

proper red/black polarity.  Each sample board comes with attached red/black leads for the 

Hall voltage measurement.  Place the sample and holder between the pole faces of the 

magnet — make sure the sample doesn’t interfere with the B-field probe located to the 

rear of the space.  The holder rides on the optical mount running beneath the magnet.  

When you get the sample placed, tighten the base down securely. 

The Hall voltage is measured by the Fluke 45 multimeter.  A specially-made test 

lead is needed to connect to the sample board’s Hall leads: it has red/black banana plugs 

on one end (connecting to the Fluke), and a female micro adapter on the other which 

mates with the male plug of the board leads.  Using this lead, connect the Board to the 

meter as shown in Fig. 6: 

 
Fig. 6:  Setup wiring for metal-foil samples. 

 



Using banana-jack cables connect the Pasco power supply which will provide the foil 

current (Fig. 6 again).  With the sample board orientation and electrical polarities 

indicated (and the magnet current in the ‘Normal’ setting), the experiment will have the 

same geometry as in Figs. 2 and 3.  You should satisfy yourself that this is so. 

 

3.  Next, connect the USB cables to your PC:  There are two (see Fig. B5), one from the 

Gaussmeter box, and one shared by the magnet power supply and the Fluke meter.  Turn 

on these instruments and deal with the usual Windows problem of finding ‘new’ USB 

devices.   

The Sorensen magnet power supply is disabled until the magnet cooling water is 

turned on.  This is accomplished by opening the ball valve on the copper plumbing on the 

wall behind the magnet.    

 

4.  Now, you must establish a constant current through the foil:  On the Pasco power 

supply, zero the voltage- and current-limit knobs (counterclockwise all the way).  Turn 

on the supply and turn the voltage adjust all the way up – you should still see zero current 

on the indicator.  Next carefully turn up the current limit knob until the current meter 

reads your desired current.  (You should take scans for at least three different currents: 

e.g. 6, 7.5 and 9 Amps or some similar values.)  The supply should now maintain a 

constant current through the foil while the Hall scan is underway. 

 

5.  You are ready to take a scan (have you read appendix C yet?)!  Run the HallScan 

program (which may or may not be on your desktop).  After initiation the code sits idle 

until you run a scan.   Mostly, the default scan parameters (2 to 10 kG ) are reasonable 

however, it’s best to increase the number of points to perhaps 10.  For the nickel sample, 

even more points are preferable.  Click the scan button and relax.   

 Currently, we have metal-foil samples mounted of Cu, Al, Fe, Ni, and Mo.  You 

should do them all (with a variety of foil currents for each).  Be careful to always 

maintain the standard setup geometry, and also make sure you have an adequate naming 

scheme for your output files. 

 



Analysis 
 

1.  Each scan, when  is plotted against BbaV ,Δ Bmeas , should result in a straight line with a 

slope of δ/IRH and an offset RI.  The nickel sample will be an exception, see part 4 

below.   

So, perform a linear fit to all your to data files.  The easiest way to accomplish 

this is simply to import them into Excel, plot them, and add a linear trend line.  This will 

give you a fitted slope and y-intercept.  Using the foil current I and the thickness δ  (listed 

on each sample) compute the Hall constant  and offset resistance R.  For a given 

sample, each data file should give a similar result – do you find any trend in  as a 

function of I?   

HR

HR

 

2.  For your final ‘measured’ value of  for a given metal can be taken as the average 

value of the  for each foil current.  Which samples conduct via electron and which via 

hole currents?  Compare your results of  to the values listed at the end of section 2 (be 

careful of your units!).  

HR

HR

HR

 

3.  For each metal, calculate from  the measured carrier density n.  Look up each 

sample’s density, mass number, and valence structure and estimate what you think n 

should be (as we did for Ag at the end of section 2).  Compare. 

HR

 

4.  Ni and Fe. 

 

 



4. Measuring the Hall Coefficient in Semiconductors. 
 

 



APPENDIX A:  Electron and hole conduction. 
 

We are all well aware (nowadays) that electrical conduction in solids is due solely 

to the movement of electrons.  A major catastrophe for the free-electron model of solids 

was the observation of positive Hall constants: how can there apparently be a motion of 

positive charge carriers in a metal?  The mystery is resolved by application of quantum 

theory to the problem, leading to the idea of electron ‘holes’.  Holes are a way of 

describing the collective behavior of many electrons by introducing fictitious particles. 

 The concept of an electron hole is, in fact, a subtle one.  Here, we explore the 

idea with the aim of comforting ourselves with a little fuller understanding.  To do so, we 

must first outline some of the most salient features of the quantum approach. 

When we solve for electron wave functions in a periodic potential we find energy 

eigenstates )(knε  which belong to various bands—each labeled by an index n.  Each 

band has a maximum and minimum possible energy.  For each band the wave vector k 

varies continuously over a K-space.  However, the spatial structure of the problem’s 

periodic potential dictates that the energies )(knε  are periodic in the ‘reciprocal’  lattice 

of K-space.  Hence, only wave vectors k that are confined to a so-called primitive cell 

(the 1st Brillion zone) of this lattice are needed to identify a unique state of the nth band. 

Now, let’s examine how electrons occupying the various states of a given band 

respond when external electric and magnetic fields E and B are applied.  To do so, we 

construct wave packets localized in space near r(t), and in wave vector near k(t).  The 

velocity of such a localized wave function is given by the group velocity.  The result is a 

semi-classical orbit [r(t), v(t)]n associated with energy )(knε and wave vector k at time t.  

The band index n is a constant of the motion.  The wave-packet’s equation of motion is 
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Note that , the so-called crystal momentum, is not the actual momentum of an 

electron following the orbit since its time-rate-of-change is dictated only by the external 

force F

k

ext.  Effects due to internal forces (i.e. the periodic potential) have already been 

accounted for in solving the band structure )(knε .  

 Now we can ask “How do electrons near either the top or bottom of a band 

behave when an external electromagnetic field is applied?” 

First, consider the response of electrons occupying orbitals with energies near to 

the maximum of the band, maxε .  Near such a maximum, the energy can be estimated by 

the leading term of a Taylor expansion 
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where km is the wave vector at which the band energy is maximum.  The quadratic 

expansion coefficient is written in terms of the (positive) parameter m*, called the 

electron effective mass2.  How does a semi-classical orbit with k near km evolve in the 

presence of an external electro-magnetic force?  The velocity becomes 
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and so the acceleration is  
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For orbits near the top of the band, the acceleration is opposite in direction to the wave 

vector’s change.  From the semi-classical equations of motion, we have 

 

                                                 
2 More generally, the energy surface need not be symmetric, in which case the Taylor expansion is written 
in terms of an inverse effective mass tensor M-1. 
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Thus, the time evolution of the orbit can be viewed as the motion of an electron with a 

negative mass or better yet: as a positive particle of positive mass m*.   

 Now consider the behavior of orbits with energies near the band minimum.  Now 

the dispersion relation is approximated by 

  

( )2
2

min 2
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with some possibly different (but still positive) effective mass .  Orbits at the bottom 

of the band thus behave in an electron-like way: 

◊m
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To summarize:   

 

Fact I:  Electrons occupying orbitals near the band minimum respond to external fields 

like particles of charge –e and mass .   Electrons occupying orbitals near the band 

maximum respond to external fields like particles of charge +e and mass m

◊m
*. 

 

We can now construct the electronic structure of the solid by filling orbitals with 

the available number of electrons using Fermi-Dirac statistics; an orbital (quantum 

numbers n, k, and spin s = ↑ or ↓) is either occupied or unoccupied at time t by an 

electron.  The total number of occupied orbitals must be constant.   

The contribution to the current density associated with an electron occupying such 

a state is simply .  The finite contribution to J due to a totally occupied region 

Ω of K-space in the n

)()( kv ne−

th band is 
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The factor 1/8π3 is a density of K-space states which appears when making a continuum 

approximation, and need not worry us.  The integral implicitly includes a sum over the 

spin quantum states.   

Now, it is not too difficult to show (using the time-reversal symmetry of the wave 

equation) that for every wave vector k in the 1st Brillion zone,  .   The 

immediate corollary is that the current density due to an entirely occupied band is zero: 
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For a band which is only partially occupied, we can use this fact to write Fact II: 
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Hence, the current density associated with a group of electrons occupying certain orbitals 

of a band is the same as if there were positively charged electrons (holes) occupying the 

unoccupied electron orbitals.   Furthermore, in normal circumstances where the holes 

are near the band maximum, these hole orbitals respond to external fields like positively-

charged particles (Fact I).  It’s in this way that nearly-filled bands exhibit hole-like 

current densities. 



APPENDIX B:  Our lab magnet 

 

Specifications for the large Bell-Labs electromagnet in our modern physics 

laboratory have been lost long ago, however something is known about it in its present 

configuration.   

The magnet coils are separated into four sub-coils on each side.  To minimize 

voltage requirements these have been connected in parallel as shown below: 

 

 
Fig. B1:  Magnet coil configuration 

 

There are N (unknown) turns per sub-coil with total DC resistance of 129 Ω.  For a 

supply current I  – the current supplied by the power supply — there is a current of 

 flowing in each sub-coil.   8/Ii =

Our new Sorensen power supply can provide a current of up to 10 A at 200 VDC.  

Note that on the magnet’s rear there’s a reversing switch if you want the current (and thus 

the field) to go the other way.  Never switch the current direction unless the current is 

zero.  There is also an interlock which disables the power supply unless the magnet 

cooling water valve is on. 

 Now, consider the magnet in cross section as sketched in Fig. B2: 



 
 

Fig. B2:  Magnet cross section showing integration path Γ. 

 

The sense of current flow through the coils is indicated by dots or arrow tails in the usual 

way.  The spacing between the pole faces is cm3.4≈d .  We can gain some insight into 

the magnet’s characteristics by applying Ampere’s law around the closed loop  Γ.  

 

enclosedId =⋅∫
Γ
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 Recall that the magnetic field strength H and the magnetic induction B are related 

at a point in a material by the local magnetization M,   

 

)(0 MHB += μ . 

 

The physical significance of the field strength is that H0μ  would be the induction 

produced using the same external arrangement of currents, but with the magnetic material 

absent.  Thus, B is a sum of two terms: H0μ , the induction due to external current 

sources and M0μ , the induction due to the local concentration of atomic dipoles.  It’s the 

H-field that we have direct control over in the laboratory via the free currents  of 

Ampere’s law.   

enclosedI



For simplicity, let’s assume that all fields are constant around the integration path.  

In the air gap 0/ μBH = , so that we can write 
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where  is the total length of the path Γ.  The enclosed current is  so that dL + NINi =8
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We see that the B-field within the gap is increased by the magnetization of the iron 

magnet core — in fact the magnetization is the dominant contribution (which is why the 

heavy core is used):   

 

MB 0μ≈ . 

 

Recall that M is dependent on H and to the past history (hysteresis) of the sample.  

For ‘hard’ ferromagnetic materials like our magnet iron, the hysteresis effects are small 

but noticeable.  In this case we can roughly consider M to depend only on the present 

value of H.  Since H is proportional to I, we can also regard M as a function of I, 

however M(I) is not a linear function:  

For ‘small’ H (and I) the susceptibility HM /=χ is large and constant so that the 

induction IB ∝ .  However as H (and I) is increased further, all the permanent atomic 

dipoles eventually align and M approaches a constant ‘saturation magnetization’ Ms.  For 

iron the A/m and the maximum contribution to B from the core 

magnetization is 

6107.1 ×≈sM

1.20 ≈sMμ  T or 21 kG. 

So, we expect that the induction B in the magnet’s air gap is linear for small coil 

currents I, but then begins to flatten out as the core begins to saturate—somewhere on the 

order of a Tesla.  In fact this is what happens:   
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Fig. B3:  Average magnet field verses coil current. 

 

The figure A1 shows the plot of the induction (measured with a Hall probe) as a function 

of I.   Note the turn over at larger fields. 

At currents  the field is quite linear with A 60 ≤≤ I
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Note that there is a residual magnetization (and thus B) when the current is zero.  As the 

magnet is used more and more with only positive currents we can expect this to grow. 

For  a good fit to the data is A 6>I
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These data points are the average of measurements taken while ramping the 

current up and then down.  For any given coil current I, B is a little stronger on the way 

back down.   

This hysteresis can best be described by considering the percent difference in the 

field between ramping down and up: 
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Fig. B4:  Typical magnet hysteresis upon ramping current up and down. 

 

The point of all this is that there is no exact relationship between the coil current we have 

control over, and the actual field produced between the pole faces.  However, in 

controlling an experiment it would be preferable to work in terms of B.  To this end we 

define a nominal magnetic field, dependent on I  by the above fitted equations.   

 In setting the magnet to a nominal B field, the necessary coil current is calculated 

by inverting the fits.  The controlling computer then sets the coil current  via interface 

with the Sorensen power supply.  In this way we have a rough control over the desired 

field, which is accurate to perhaps 5% depending on the past history of the magnet.   

The actual field is measured using a solid-state hall probe located between the 

pole faces at the rear.  The probe we use is a little cheap and non-linear, so that the Gauss 

meter’s LCD reading (based on linear electronics) is only accurate to about 1%.  

However, this analog reading is in turn interfaced to the computer via a USB A/D unit, 

and the computer can deal with the non-linearity problem.  Using our Bell Gauss meter as 

calibration, the computer outputs the measured B to about 0.1% accuracy. 

 



 
 

Fig. B5:  Schematic plan for setting a nominal B and reading actual B. 

 



APPENDIX C:  The HallScan Program 
 

This section briefly describes our LabView program for performing a Hall scan, 

i.e. measuring a sample’s Hall voltage as a function of applied magnetic field.  After 

startup and initialization you’ll have the following window to control the experiment: 

 

While initializing, an overlay window will briefly appear.  This window informs you that 

the program is reading some calibration data about the magnet.  (The file and path name 

is C:\Magnetdata\BIcalibration.txt, and contains parameters enabling the code to convert 

between nominal B-field and the magnet’s coil current.) 

The lower-left panel is all there is to adjust:  Simply set the start and stop values 

of the magnetic field, and the number of points.  For example, a scan from 2.0 to 10.0 kG 

with 9 points will take data at B = 2, 3, 4, 5, 6, 7, 8, 9, and 10 kG (nominal).  At each of 

these B settings, the program samples the hall voltage a number of times determined by 

the samples/point parameter.  The auto-reset toggle tells the computer whether or not to 

reset B to the starting value after the current scan is complete. 

Once you have selected your desired scan parameters, simply click the start-scan 

button.  A window will appear asking you to enter the sample’s foil current; all this is 



used for is to appended to the scan’s output file.  The scan status window gives you 

information about the progress of the scan, i.e. which point it’s on and the measurements 

that have been completed so far (red indicators lighted).  At the end of a scan, a window 

appears prompting you for an output filename; once entered, the data is written to disk 

and the program goes back to idle.   

When you’re finished taking scans, be sure to click the power down button and 

wait until the program ends before exiting.  This ensures the coil current is ramped slowly 

down to zero. 

The upper left panel deals with serial communication ID’s for the various 

instruments used in the scan.  In theory these will never need adjustment. 

 

Here’s an example of a typical output file: 

 

Icoil                 Bnom             VHall               stddev              Bmeas  
1.3700E+0 1.9990E+0 2.9314E+0 5.4772E-4 1.8060E+0 
2.0900E+0 2.9932E+0 2.9400E+0 0.0000E+0 2.7974E+0 
2.8200E+0 4.0012E+0 2.9492E+0 4.4721E-4 3.8041E+0 
3.5400E+0 4.9953E+0 2.9576E+0 5.4772E-4 4.7874E+0 
4.2700E+0 6.0033E+0 2.9660E+0 0.0000E+0 5.7834E+0 
4.9900E+0 6.9975E+0 2.9738E+0 4.4721E-4 6.7579E+0 
5.7200E+0 8.0055E+0 2.9820E+0 0.0000E+0 7.7343E+0 
6.5100E+0 9.0013E+0 2.9900E+0 0.0000E+0 8.7568E+0 
7.3200E+0 9.9966E+0 2.9976E+0 5.4772E-4 9.7651E+0 
8.2700E+0 1.1000E+1 3.0054E+0 5.4772E-4 1.0851E+1 
foil current was 7.870000 
 

 

This can be imported to an Excel worksheet for analysis.  The 1st and 2nd columns give 

the magnet coil-current (A) and nominal B-field (kG).  The Hall voltage’s average (of the 

samples taken) is given in column 3, and its standard deviation in column 4.  Finally, the 

last column gives the ‘actual’ magnetic field measured using the hall probe. 

 

 


