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Introduction 
 

There’s no way out of it: experimental physics involves not only measuring 

something, but also determining how significant that measurement is.   Unlike 

introductory physics laboratory experiments (where the correct answer is known), in 

doing new research it’s inherent that we work on the edge — measuring new quantities 

using new techniques.  In these circumstances our results are usually ‘rough’.  It’s critical 

in reporting our data to the rest of the scientific community to include a discussion of the 

significance of our measured values.  Alternately, when performing precision 

measurements, where we experiment to improve the accuracy of some value, it is equally 

vital to have a deep understanding of error analysis. 

The following document is an attempt to briefly outline the most basic ideas of 

data analysis, which anyone working with experimental data should be aware of.   The 

subject is actually quite subtle, but here we cheerfully ignore anything difficult. 

 

 
Measurement 
 
 Let’s begin by considering the measurement of a single quantity x.  This might be 

the length of a bolt or the mass of an elementary particle.  Thinking philosophically about 

the procedure, we see that we have a machine of sorts:  we have an isolated physical 



system in which the parameter takes on the true value xtrue, and we have another system 

(the experiment) which interacts with the first system to measure x. 

 

 
 

When we run the machine we get a specific output xi –a measurement!  It’s a sad feature 

of the measurement process that the outcome is uncertain.  What we can say about the 

experiment is that there is a probability distribution  for the outcome.  If we run the 

machine (perform the experiment once) then the probability of getting a result between x 

and   is given by .  This distribution is often referred to as the parent 

distribution of the measurement.   P(x) contains all possible information about our 

experiment, but is totally unknown.  If our design is good then the experiment has good 

accuracy: the peak value of is near to x

)(xP

dxx + dxxP )(

)(xP true (no systematic errors in our procedure).  

The width of  provides information about the precision of our measurement. )(xP

 Ideally, (if  were somehow known) we could report the entire distribution 

and revel in a job well done.  However, for practical purposes this can seldom be done; 

instead we report key aspects of the distribution.  Two of the most important 

(conventional) parameters describing a distribution are the mean (average) 

)(xP

 

∫= dxxxP )(μ , 

and variance 

∫ −= dxxPx )()( 22 μσ . 
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The mean tells us something about our measurement of xtrue (assuming good accuracy), 

and the standard deviation σ  gives an idea about the uncertainty inherent to our 

experiment (our precision).  We say then that our result is  

 

σμ ±≅ruetx . 

 
1If  were a Gaussian (or ‘normal’) distribution)(xP  (usually assumed) then we expect 

68% of our measurements to lie within σ±  of μ, and 96% of them within σ2± .  Hence, 

we expect about one measurement in three to lie more than σ± , but less than σ2± ,  

from μ. 

If the parent distribution is badly asymmetric more parameters can be used to 

characterize , such as the mode (most probable value of x) and median (the value of 

x for which there is equal probability above and below).   For a symmetric function, the 

mean, mode, and median are all equal. 

)(xP

  

Sampling 
 

 If the parent distribution is the goal, but unknown, how can we construct it?  In 

theory this is simple: we make an infinite number of measurements, and a histogram of 

the results gives .   In practice this isn’t possible and often we are able to repeat the 

measurement only a very few times.  Suppose we do so, the question becomes what can 

N measurements  tell us about ? 

)(xP

},...,,{ 21 Nxxx )(xP

 One obvious thing we can do with our data is to construct the sample mean 

 

∑=
i

ix
N

x 1  

 

                                                 

⎥⎦
⎤

⎢⎣
⎡ −

−= 22

2)(exp
2
1)(

σ

μ
σπ

xxP1 The Gaussian distribution is  
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2and the sample variance

 

∑ −
−

=
i

i xx
N

s 22 )(
1

1 . 

 

xSince the values are randomly sampled, the observed values of }{ ix  and s are also 

random.  From the parent distribution we can construct the probability distributions 

)(xPN  and ,  i.e. the probabilities that, given we take N samples, the sample 

mean will be 

)( 2sPN

x  and the sample variance will be .  With very few assumptions it’s 

found that these distributions are Gaussian:  The function 

2s

)(xPN is centered at μ with a 

variance of .  Similarly,  is centered at  with a variance of  

.  Approximating 

N/2σ 2σ)( 2sPN

)1(2/2 −Nσ s≈σ , our best estimate about the parent distribution is 

 

N
sx ±≈μ       and      

)1(2 −
±≈

N
ssσ . 

 

∞→NNotice that (as expected) when  we recover the parameters μ and σ describing 

 exactly.   )(xP

Our precision grows only slowly with increasing N:  Suppose we make an initial 

measurement with N samples, but are unhappy with the precision of our result.   We can 

repeat the process, so that we have in total 2N samples, but this only decreases our error 

in our estimate of μ  by a factor of 7.02/1 ≈  .  If we wanted to increase our precision 

by an order of magnitude, we’d need a total of 100N samples!  This is an unhappy, but 

inescapable, fact of experimental work.  We’ll encounter this same problem when 

discussing counting experiments. 

 One final note:  When we have very few samples, our error in σ  can be large.  

Hence, in using s as an approximation to σ  for our uncertainties, we may be significantly 

underestimating our error in μ . 

                                                 
2 Dividing by N-1 instead of N is one of those subtle points we are ignoring. 
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Correlation 
 

 Instead of returning a measurement of a single parameter (x), consider what 

happens when our experimental machine returns several parameters — say u and v.  

These might be a simultaneous measurement of length and width, pressure and 

temperature, and so on.  The experiment’s parent distribution is then of the form .  

What kind of parameters can we use to describe this joint distribution?  If  u and v were 

truly independent parameters we could factor the parent distributions into 

),( vuP

 

)()(),( vPuPvuP vu= . 

 

In this case we can happily define a mean and variance for each distribution:  ),( uu σμ  

and .   ),( vv σμ

However, it’s often the case that u and v aren’t independent.  Consider the case of 

measuring an electric potential as a function of distance between two electrodes.  Our 

measurement pair is then (x,V), but we know that V varies with x: .  Hence, in trying 

to measure V at the point x, we know there must be some correlation between the sample 

points  and .  What do we do?   

)(xV

ix iV

We can still use the concept of mean and variance by marginalizing the unwanted 

parameter:   

 

∫ ∫= dudvvuPuu ),(μ   

 

∫ ∫−= dudvvuPu uu ),()( 22 μσ , 

 

and similarly for .  Thus ),( vv σμ uμ  is the average value of the measured u, given that 

we ignore all accompanying information about v.  The following figure shows a sketch of 

two possible parent distributions centered at the point : ),( vv σμ
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Each distribution in the figure has similar values of the marginalized errors  and :  

Discarding any knowledge about v, either distribution A or B gives us the same spread in 

our precision of u (and vice versa for v).  However, distribution B shows a more precise 

state of knowledge than A, it’s much narrower along the dashed diagonal shown.  Thus, if 

we move along certain directions (i.e. constrain the ‘motion’ of  u and v together), our 

error is somehow less.  In this example our measurements of u and v are positively 

correlated, a larger (or smaller) result for a measurement of  is correlated to some 

extent with a simultaneously larger (or smaller) result for . 

uσ vσ

iu

iv

To describe the degree of correlation between u and v, we use the covariance  

 

dvduvuPvu VUUV ),())((∫ ∫ −−= μμσ . 

 

One can immediately see that  if u and v are independent (substitute 

 into the integral).  If   u and v are positively correlated, i.e. 

there is a tendency in the measurements for u to increase when v does.  If    u 

and v are negatively correlated, i.e. if u increases there is a tendency for v to decrease, 

and vice-versa.    

0=UVσ

)()(),( vPuPvuP VU= 0>UVσ

0<UVσ
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To determine how significant the correlation is, independent of scale, we examine 

the so-called cross-correlation coefficient .  For instance, a totally-

dependent linear relation 

VUUVC σσσ /=

vu α= 1±=C gives  if  or . 0>α 0<α

 To get some idea of the parent distribution we can again perform our experiment 

N times.  This gives N pairs of data .  Ignoring either u or v, we can calculate the 

marginalized sample means and variances 

),( ii vu

),( 2
Usu ),( 2

Vsv and   as in the last section.  

Additionally, we should calculate the sample covariance 

 

∑ −−
−

=
i

iiuv vvuu
N

s ))((
1

1 . 

If  this is comparable to , we know there is a strong correlation between the data 

pairs.  If there is a strong correlation, we must think very carefully about how to handle 

our findings — an important subject, but beyond the scope of this work 

VU ss

 

Error propagation 
  

It’s almost always the situation that the quantity we are interested in is derived 

from the actual measurements.  For instance: we measure the voltage V across, and the 

current I through, some circuit element and want to report the resistance R = V/I.  Given 

our uncertainties in V and I, what can we say about our uncertainty in this measurement 

of R?   That is, how do our measurement errors propagate when used in a calculation? 

Let’s consider the problem of some derived quantity z which is a function of two 

measured quantities u and v.  We have some functional relationship .  Now, 

the true mean of z is given by 

),( vufz =

 

∫∫= dvduvuPvufz ),(),(μ . 

 

While it’s not necessarily the case, it is always assumed that 
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),( vuz f μμμ ≈ . 

 

By doing so, we can then make a Taylor series expansion of z about its ‘mean’: 

 

...)()( +⎥⎦
⎤

⎢⎣
⎡
∂
∂

−+⎥⎦
⎤

⎢⎣
⎡
∂
∂

−=−
v
zv

u
zuz vuz μμμ , 

 

.  The variance of z is where the derivatives are evaluated at the point ),( vu μμ

 

dvduvuPz zz ),()( 22 ∫∫ −= μσ . 

 

Substituting the Taylor expansion into the integral, expanding the square, and applying a 

few definitions gives (to lowest order) 

 

⎥⎦
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⎡
∂
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22 . 

 

This equation is used, in lieu of any knowledge about , for deriving the propagated 

uncertainty in z.  If u and v are independent , we have the more familiar 

relationship 

),( vuP

0=uvσ

 
2

2
2

22
⎥⎦
⎤

⎢⎣
⎡
∂
∂

+⎥⎦
⎤

⎢⎣
⎡
∂
∂

=
v
z

u
z

vuz σσσ        ( u and v independent! ). 

 

These relations can be generalized to include more variables, as iuu →

 

∑ ⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

=
i i

uiz u
z

2
22 σσ      (all  independent). iu
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The following table lists results for some common situations, assuming independent 

variables (and constants a and b which are exact): 

 

Relation z(u,v) Independent error  

Scaling: 
uz aσσ =  

auz =  

Inversion: 

u

u

z

z

μ
σ

μ
σ

=  
uaz /=  

Addition and subtraction: 22222
vuz ba σσσ +=  

bvauz ±=  

2

2

2

2

2

2

v

v

u

u

z

z

μ
σ

μ
σ

μ
σ

+=
Multiplication or division: 

 
auvz = vauz /=  or    

Power: 

u

u

z

z b
μ
σ

μ
σ

=  
bauz ±=  

Exponential: 
u

z

z bσ
μ
σ

=  
buaez =  

Natural logarithm: 

u

u
z a

μ
σ

σ =  
)ln(buaz =  

 

We see that for addition and subtraction the scaled absolute errors are added in 

quadrature (i.e. sum of squares), but for multiplication and division the relative errors 

μσ /  add in quadrature.   

 

A simple example: 

311151 ±=ISuppose we measure a current of  mA flowing into a circuit junction 

by one wire, and  mA by another.  The total current  is 

 mA.  Note, that the quadrature error is much smaller than if we had simply 

added the errors (± 94 mA).  This is a consequence of the statistical nature of the two 

readings: it is very unlikely to have both currents take on their extreme values 

simultaneously if they are independent. 

632412 ±=I 21 III +=

70356 ±

 - 8 -



 

A less simple example: 

18180 ±=V Suppose we measure a voltage of  V across a resister and a current 

 A through it.  The resistance is 067.782. ±=I IVR /= .  Assuming that our 

measurements of V and I are independent, the relative errors now add in quadature.  We 

have Ω.  Here the 8.5% error in current combines with the 10% error in 

voltage to give a relative error of 13% in R. 

30230 ±=R

 But wait!  We just used the fact that V and I are related by Ohms law.  Perhaps the 

variations in V and I are correlated, at least to some extent!  What happens to our error in 

R?   Going back to our data samples we calculate the covariance  and find there is a 

degree of correlation  (note the positive correlation: an increase in I 

produces an increase in V).   Using the general formula above we find (after some 

manipulation) 

VIs

IVVI sss 5.0=

 

IV

VI

I

I

V

V

R

R

μμ
σ

μ
σ

μ
σ

μ
σ 22

2

2

2

2

2

−+= . 

 

We see that the positive correlation decreases our error in R.  This is because not all of 

the variation in our samples was statistical, i.e. a low current reading  is correlated to a 

low voltage reading  so that the actual spread in the values of  is smaller 

than we would expect were V and I independent.  Plugging in the numbers gives a revised 

estimate of 9% relative error, or 

iI

iV iii IVR /=

22230 ±=R Ω.   

 

Counting statistics 
 

3In many types of measurements our data arises by counting something .  It might 

be anything from the number of neutrons detected in a given amount of time t to the 

number of kids on a school bus.  In either case, we assume there is some quantity 

                                                 
3 In most digital measurements we are actually counting.  
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governing the result of our measurement of  n units:  this could be the neutron ejection 

rate R ( ) or, in the case of the bus, simply the class size ( ).  In 

either case, there is uncertainty in how many counts we actually will measure.  In the 

neutron example, the outcome is inherently uncertain due to quantum mechanics.  For the 

bus driver, the kids might be running around while he counts.  Hence, there is some 

discrete parent distribution which describes the experimental process. 

RtNn =≈ classNNn =≈

)(nP

It turns out that, for a number of fairly fundamental reasons, with no further 

information4 than that there is some such expected quantity N, the best parent distribution 

to use is Poissonian5.  The Poisson distribution has the property that its average value is 

N,  ( Nn =μ ) as is its variance ( ).  Thus, if we take a measurement and get the 

value n, we can say from our previous considerations that 

Nn =2σ

 

nnN ±≈  

 

We see that our estimate of N is relatively more precise the larger n is i.e. 

nnn /1/ =σ .  We encountered this same scaling when considering the error in the 

mean of a measurement sampled n times.  Obviously, the larger the counts the higher 

precision of our measurement.  The sad result is that the relative error decreases slowly 

with increasing n: 

 

Counts Relative error (%)

10 31.6 

50 14.1 

100 10.0 

500 4.5 

1000 3.2 

                                                 
4 The bus driver actually has a lot more than this to go on, but let’s keep the analogy going for purposes of 
discussion. 

!
)(

n

NenNnP
−

=5 The Poisson distribution is . 

 - 10 -



5000 1.4 

10,000 1.0 

100,000 0.3 

1,000,000 0.1 

 

 

To increase precision we need to acquire more counts.  The neutron scientist can 

do this by increasing the counting time t, assuming that the rate is sufficiently time 

independent.  To increase the precision by an order of magnitude, the sample time must 

be increased by a factor of 100.  Alternately, the experiment can be repeated a number of 

times (with the original counting time t).  The bus driver is stuck with the latter option, 

doing recounts. 

Suppose we redo the experiment M times, producing M sample counts .  The 

average value of these samples is 

}{ in

 

∑ ==
i

total
i M

n
n

M
n 1 , 

 

where  is simply the total of all counts collected.  If our experiment is accurate, we 

expect 

totaln

nnN ≈ .  Using our method for error propagation, we can estimate the error in  

by 

 

∑∑ ⎥⎦
⎤

⎢⎣
⎡=⎥

⎦

⎤
⎢
⎣

⎡
∂
∂

=
i

i
i i

in Mn
n 2

2
2

2 1σσσ . 

 

Since , this simply gives ii n=2σ Mntotaln /=σ .  Thus, our best estimate for N is 

 

( )totaltotal nn
M

N ±≈
1 . 
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This is reassuring: it should make no difference to our results whether we average the 

samples, or simply use the total collected with its associated error.  What matters for the 

precision of our measurement is the total number of counted items.  The totaln limit in 

our precision is fundamental to counting experiments, and usually the frustrating design 

parameter when we plan an experiment.  

 

 

 

 

Linear regression 
 

 One of the most common tasks in data analysis is to fit a straight line to data.  

Suppose we have a paired set of M sampled means ),( ii yx  with sample errors .  

We think there is some underlying relationship between x and y of the form 

),( iyix ss

BAxy += ,  

and so want to determine the values of A and B that are most consistent with the data.  

Since these parameters usually have physical significance, we not only want their values 

but also an idea of their errors (something an Excel trendline doesn’t provide).  

ix To make the problem simple, we consider the case where our errors in the  are 

negligible6
ix.   Thus we consider the  to be precisely known, and for each such value we 

think  (where we have defined ).  For the ith
yii ss ≡ii syy ±≈   set we then know that 

 and the expected  y is thus .BxAy i += iy  The error between our measurement 

.BxAy iii −−=ε   If our guess of A and B is wrong, this error is significant compared 

with the expected error si.  A measure of the overall “goodness-of-guess” is the so-called 

chi-squared statistic 

 
2

2 ∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

i i

i

s
ε

χ . 

 
                                                 
6 If we can’t make this assumption, the problem becomes much more difficult. 
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For a good fit, we expect .  To find the values of  A and B for which  is a 

minimum

M≈2χ 2χ
7, we set 

 

0
2

=
∂

∂
A

χ 0
2

=
∂

∂
B

χ    and      . 

 

Some algebra provides the solution 

 

⎥
⎥
⎦

⎤
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⎣
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−

Δ
= ∑ ∑∑∑ 2222
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ii
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i
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xy
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⎥
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⎦

⎤
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⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
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2

22

2

2
1

i

i

i

i

i s
x

s
x

s
. where 

 

From our earlier considerations, we can find the estimated errors in these derived 

quantities propagated via their dependence on the measurements }{ iy .  For example 

 
2

2
2

22
⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

≈⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

= ∑∑
ii

i
ii

iA y
As

y
Aσσ . 

 

The results are  

 

∑
Δ

≈
i i

A s 2
2 11σ , 

 

∑
Δ

≈
i i

i
B s

x
2

2
2 1σ . 

                                                 
7 Often referred to as the method of least-squares. 
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How good is the fit between our data and a line?  Conventionally, one uses the reduced 

chi-squared 

 

2

2
2

−
=

Mr
χχ . 

 
8. A good fit should give a reduced chi-squared near one

Putting it all together: An example 
 

Let’s analyze some data from a decay experiment.  After some preliminary 

measurements, we decide that the decay half-life  of our specimen is on the order of 

an hour.  We intend to measure  by counting the number of decays counted in some 

time interval 

2/1t

2/1t

tδ  at various times : it )( ii tnn = .  Since the sample’s activity is low, we 

want to count as long as possible for each sample, but we don’t want to introduce too 

much error by the fact that the count rate actually changes over the sample time. 

The activity is given by 

 
τ/)0()( teAtA −= , 

 

where the time constant )2ln(/2/1t=τ .  From this we find that the relative change in 

activity (and thus counts) is 

 

τ
δδδ tt

dt
dA

AA
A

−=≈
1 . 

 

If we arbitrarily decide that we don’t want the activity to change by more than 2%, this 

gives us a sample time of  

 
                                                 
8 How near?  One can argue about this using the chi-squared distribution. 
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min8.0)2ln(min6002.0 =××≈tδ  

 

We decide to take counts for 1 minute every half hour.  We note that we should keep this 

source of error in mind, and proceed with the experiment.  Our results are the eight 

measurements: 

 

 

 

it in (min)  ii ns =  

30 356 18.9 
60 296 17.2 
90 203 14.2 
120 129 11.4 
150 113 10.6 
180 77 8.8 
210 74 8.6 
240 49 7.0 

 

A graph of the raw data shows the expected exponential decay: 

0
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Of course, the scheme is to measure .  To do so we recognize that the number of 

counts expected in 

2/1t

tδ  is proportional to the activity.  Taking the logarithm gives 

 

[ ] [ ] tntn
τ
1)0(ln)(ln −=  . 

 

If we fit a straight line to ln(n) the slope will gives us the time constant and so the half-

life.  In preparing our data for this step, we find from our error-propagation table that the 

absolute error in ln(n) is the relative error of the data ( n/1 ).  We have 

 

it ]ln[ in (min)  in ns /1)ln( =

30 5.8757 0.0530 
60 5.6912 0.0581 
90 5.3121 0.0702 
120 4.8609 0.0880 
150 4.7307 0.0939 
180 4.3415 0.1141 
210 4.3013 0.1164 
240 3.8980 0.1424 

 

Which graphed looks like 
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Note that that the error in the large-time (low-count) data is much larger than for the low-

time points.  These points will not be weighted as heavily in our least-squares fit:  Recall 

that the  which we minimize weights each point by the reciprocal of that point’s 

variance.   Points with small error are weighted more heavily than those with large error.  

The following table gives an idea of the various data point’s relative importance to the fit: 

2χ

  

Relative weight Weight  
Point 

∑ j j

i

s
s

2

2/1
2

1

is
    (min) it

30 356.3 0.2745 
60 296.2 0.2283 
90 202.8 0.1563 
120 129.1 0.0995 
150 113.4 0.0874 
180   76.8 0.0592 
210   73.8 0.0569 
240   49.3 0.0380 
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To proceed with the linear regression we set )ln( ii ny = ,  ii tx = , and  and use 

the results of the previous section. 

)ln(nii ss =

Some intermediate results are: 

 

∑ 2/1 is  31.298 ×10

∑ 2/ ii sx  51.204 ×10

∑ 22 / ii sx  7   1.602 ×10

∑ 2/ iii syx  55.895 ×10

∑ 2/ ii sy  36.864 ×10

∑ 22 / ii sy  43.677 ×10

Δ 96.304 ×10
 

Putting these together we have the results 

 

3

2/1
10)454.707.9()2ln( −×±−==

t
A  Slope:    

050.189.6)]0(ln[ ±== nB  Intercept:  
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Since the reduced chi-squared  is reasonably close to one, we’re 

comfortable with the linear model for our data. 

38.12 =rχ

We can finally figure our sample’s half life 

 

min3.34.712/1 ±=t . 

 

Note the relative error in  is the same as that for A (error propagation again).  This 

error is about 5%, which is roughly the error of our most precise measurement 

( counts).  This makes sense; generally you wouldn’t expect the precision of a 

derived result to be much better than that of your data.  For further experiment, we should 

also bear in mind that the precision to which  is measured is coming close to the 2% 

error we estimated in n due to its variation over the sample time 

2/1t

3561 =n

1n

tδ . 
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