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A.  Introduction 
 

Phase-sensitive detection is a powerful method for seeing very small signals in the 

presence of overwhelming noise.  Developed in the 1960’s, it’s become a ubiquitous 

experimental technique, and the lock-in amplifier1 is the instrument which makes this 

method possible.   

In this laboratory we’ll learn about the method in some generality, and apply it to 

measure some very small quantities which would be impossible by conventional means.  

The laboratory consists (like life) of three stages:  First we’ll look at a synthetic signal in 

the presence of some well behaved ‘noise’.  This will give us some insight into the lock-

in’s behavior in the real world.   Next, we’ll perform the classic ‘light-bulb experiment’ 

which gives a lasting impression of the power of the technique.  We’ll actually be able to 

measure the intensity of a flash-light bulb placed at the far end of the 3rd floor hallway, in 

the presence of all the lighting from the overhead and Coke machines – with a very poor 

detector2.  Finally, we’ll apply the method to the more serious problem of measuring the 

                                                 
1 If Wikipedia is to be believed: The lock-in amplifier was invented by physicist Robert Dicke of 
Princeton University, who founded the company Princeton Applied Research (PAR) to market the product. 
2 Our eyes can do it, but they’re very, very good detectors! 
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Faraday effect.  Here, polarized light passing through a dielectric material in the presence 

of a weak magnetic field rotates slightly.  This angle of polarization rotation is very small 

(≈ 0.008°) but we’ll be able to measure this easily — and accurately. 

The actual purpose of this lab is to leave you with some working knowledge of 

lock-in amplifiers and what they’re good for.  At some point in your future career you 

may very well be designing experiments of your own, and a vague memory of this lab 

and phase-sensitive capabilities may put you on a fruitful track. 

 
B.  Phase sensitive detection 
 

A lock-in, or phase-sensitive, amplifier is simply a fancy AC voltmeter.  Along 

with the input, one supplies it with a periodic reference signal.  The amplifier then 

responds only to the portion of the input signal that occurs at the reference frequency 

with a fixed phase relationship.  By designing experiments that exploit this feature, it’s 

possible to measure quantities that would otherwise be overwhelmed by noise. 

The lock-in amplifier operates on a very simple scheme:  Consider a sinusoidal 

input signal 

 

)sin()( 0 φω += tVtV . 

 

Suppose we also have available a reference signal 

 

)sin()( ttVR Ω= . 

 

  The product of these two gives beats at the sum and difference frequencies 

 

[ ] [ ]{ }φωφω +Ω+−+Ω−= ttVtVtV R )(cos)(cos
2

)()( 0 . 
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When the input signal has a frequency different from the reference frequency Ω , the 

product oscillates in time with an average value of zero.  However, if Ω=ω  we get a 

sinusoidal output, offset by a DC (zero frequency) level: 

 

[ ] [ ]{ } Ω=+Ω−= ωφφ tVtVtV R 2coscos
2

)()( 0 . 

 

If we can extract the DC component of this product, and are able to adjust φ , we 

get a direct measure of the signal amplitude  0V .  So, we arrange to have our quantity of 

interest oscillate at Ω ; any unwanted signals oscillating at different frequencies are 

rejected.  Furthermore, any random3 noise that does oscillate at Ω  will also be rejected. 

The following figure illustrates how a lock-in works: 

 
 

Fig. 1  Block diagram of phase-sensitive detection.   

 

The input signal V(t) passes through a capacitor, blocking any pre-existing DC offset, and 

is then amplified4 (A).  The reference signal VR(t) passes through an adjustable phase-

shifter (φ).  These two results are then multiplied, and any resulting DC component is 

extracted by the low-pass (L.P.) filter.   

                                                 
3 By random, we mean that the noise signal has a time-dependant phase, and upon averaging gives zero.  
4 The amplifier may be in stages, before or after the multiplier, or both. 
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 The idea is simple enough, but the actual implementation is difficult and Lock-ins 

tend to be expensive.  While this isn’t an electronics class, a few of the details are worth 

noting: 

 First, the actual reference signal need not be sinusoidal.  Lock-ins take the 

reference signal, pass it through a phase shifter, and then create their own internal 

reference ‘locked’ to the phase-shifted external reference.  This allows for much greater 

flexibility (and reliability) in operation.  Also, the input need not be sinusoidal, merely 

periodic with frequency Ω .  The lock-in then picks out the fundamental Fourier 

component of the input waveform. 

 Second, the low-pass filter is not perfect.  In fact, if it were perfect, the instrument 

would be largely useless.  We’ll look at this in more detail presently. 

 Finally, the multiplier (or ‘demodulator’) is a tricky device to implement in 

analog form (or used to be).  If one first digitizes the input and reference, then of course 

multiplication is simple.  However, there are some disadvantages inherent to the digital 

approach, primarily one of dynamic range — if you digitize the input with a certain 

precision (bits) the ability of the instrument to extract small signals is of course limited.  

Thus, when shopping today one can find both digital and analog models, each having 

their own merits.  Older models (like the one you’ll be using, naturally) are analog, but 

additionally don’t realize the exact scheme outlined above:  Because the multiplication 

circuitry is difficult, in older lock-ins the polarity of the input signal is reversed 

periodically at the reference frequency.  This is equivalent to multiplying V(t) with a 

square-wave reference.  The result is the same, however the problem of harmonics is 

introduced (see App. B).  

 Regardless of all these kinds of details, let’s continue by considering the lock-in 

as a machine performing the following operation 

 

)cos(    noise"" )sin( 00 φφ VVtVV outin ∝→++Ω= . 

 

Usually, the experimenter adjusts the phase difference 0=φ  so that the signal is a 

maximum.  Lock-ins are calibrated so that this maximum output voltage equals the RMS 

value of the desired signal, that is 2/  0VVout = . 
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 Now, to apply the lock-in to real world problems we need to understand a slightly 

subtle, but important (and useful) point:  It’s seldom the case that we modulate the input 

voltage sinusoidally, but rather some physical parameter.  This parameter we modulate 

causes the physical system we’re interested in to respond with frequency Ω , and finally a 

detector translates this into a voltage!  All is well if the system’s and detector’s responses 

are linear, however often they are not.   

Let’s consider this point more carefully.  We have a combined system and 

detector, which creates a voltage which is a function of some stimulus (s) over which we 

have control: )(sVV = .  The stimulus might be anything; current, magnetic field, light 

intensity or wavelength, etc.  We then arrange the stimulus to vary sinusoidally around 

some average value s  at our reference frequency Ω , with amplitude A: 

 

)sin()( tAsts Ω+= . 

 

The detector output is then a time-varying voltage  

 

))(()( tsVtV = . 

 

In general, we can’t say much else.  The output will still be periodic in time, but will not 

necessarily be a sine-wave.   Our lock-in will then pick out the fundamental Fourier 

component of this function and report its RMS voltage.  However, if we arrange it so that 

modulation amplitude A is ‘suitably’ small, then we can approximate V(s) by a Taylor-

series expansion about s : 

 

)()sin()()( 2AOtA
sds

dVsVtV +Ω+=  

 

Running this through the lock-in amplifier gives an output 

 

sds
dVAV

2out ≈ . 
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In words:  The lock-in’s output is proportional, not only to the modulation amplitude A, 

but also to the derivative of the system’s response with respect to the stimulus, evaluated 

at ss = .  We’ve also assumed here that the relative phase difference has been pre-

adjusted so that 0=φ .  If this isn’t the case, we must also include the )cos(φ  factor. 

Figure 2 gives a graphical visualization of the above argument.  The graph shows 

some non-linear output function V(s).  Two inputs are shown at s1 and s2, each modulated 

with amplitude A.  The output depends not only on the input modulation amplitude A, but 

also on the slope.  Naturally, if the amplitude is not sufficiently small, the outputs become 

distorted and the outputs are no longer is proportional to dsdV / . 

 

 

 
 

Fig. 2  Effect of a non-linear response on modulated inputs.  

 

 

The lock-in measures not only the magnitude of the response derivative, but also the sign.  

This we’ve shown mathematically using the Taylor-expansion argument above, but it’s 

also worth seeing intuitively how the lock-in does this.   It’s obvious that the amplitude of 

the output signal should be proportional to dsdV / , but it’s the phase-sensitive aspect of 
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the instrument that also allows us to also determine if it’s rising or falling.  Figure 3 

sketches the response to a modulated input for a positive and negative slope.  The sign of 

the derivative is reflected in the phase of the output waveform relative to that of the 

input. 

 

 
 

Fig. 3  Relationship between output phase and the sign of the response’s slope. 

 

The proportionality of the Lock-in output to dsdV / is actually very useful in a 

number of situations.  An important example arises in spectroscopy where we’re looking 

at the absorption of a sample as a function of incident-light frequency (ν ) near some 

resonance centered at 0ν .  If we vary the frequency slightly around an average value ν  

sinusoidally we can use our lock-in technique to look at the absorption as a function of 

ν .   The following figure sketches the line and its derivative: 

 

 
Fig. 4  Derivative of an absorption resonance. 
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The lock-in output (sometimes called a dispersion curve) is bi-polar; positive below 

resonance and negative above—with a zero crossing at 0ν .  There are a number of 

advantages to the lock-in’s response.  In the presence of noise or for weak signals, the 

dispersion curve proves more accurate in determining the peak center.   

Most importantly the dispersion response is really useful for practical purposes in 

control systems.  For frequencies near 0ν  the dispersion curve provides an error signal for 

regulating ν :  if the output is negative you know ν  is too large; if positive, it’s too small.  

This error can be used as feedback to stabilize the source.   

The following figure outlines an interesting example: stabilizing a diode laser 

against frequency drift:   

 
Fig. 5  Simplified feedback system. 

 

Suppose we have a diode laser capable of producing a very monochromatic output beam 

in the infra-red.  The output wavelength is determined by a laser controller, the details of 

which we won’t be concerned with, except that an input voltage can be used to tune the 

output wavelength λ over a certain range.  Unfortunately, the controller isn’t perfect and 

the beam’s wavelength will tend to drift away from a set value. 
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 To stabilize the laser, the output beam (or a portion of it) is passed through a Cs 

vapor cell and the intensity monitored.  If the laser wavelength is initially set to the Cs D1 

resonance line, a lock-in can be used to maintain this frequency.  As the laser wavelength 

drifts high or low, the lock-in’s output provides an error signal which, when conditioned 

and fed back to the controller, corrects the drift. 

 With this somewhat lengthy digression out of the way, let’s examine one last 

point which is important in experiment design:  Lock-in detection measures the derivative 

of the response with respect to the stimulus s which is modulated.  When there’s more 

than one parameter, the choice of which one to modulate in a given experiment must be 

considered carefully. 

 Let’s look at a simple, hopefully familiar, example:  Consider determining the 

Hall constant (RH) of a metal by measuring the hall voltage 

 

RIBIRV H
hall +=

δ
. 

 

Here δ is the sample thickness, I the current passing through the sample, B the applied 

magnetic field, and R is an unknown (and unwanted) offset resistance.   

Suppose we want to use our lock-in technique to find RH.  There are two 

parameters we can modulate, B or I.   If we hold B constant and modulate the current 

tII Ω= sin0 , then measuring Vhall with the lock-in gives 

  

⎟
⎠
⎞

⎜
⎝
⎛ += RBRIV H

out δ2
0 . 

 

This is a bad experimental design since our output contains the unknown offset resistance 

which is likely large compared with the term we want.  Instead, if we hold I constant and 

modulate the magnetic field tBB Ω= sin0 , we get 

 

⎟
⎠
⎞

⎜
⎝
⎛=

δ
IRBV H

out 2
0 , 
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with all quantities known except RH.  By choosing to modulate B rather than I, the 

derivative feature of the lock-in is employed (gainfully) to reject a large nuisance signal. 
 

C. Getting to know the Lock-in 
 

In this section we’ll explore some basic lock-in amplifier characteristics.  Our 

laboratory will be based on an EG&G model 5101 lock-in amplifier.  As mentioned, this 

model is a bit old (and has a few problems) but is simple, having all the basic features.  

Figure 3 is a photo of the 5101 front panel: 

 

 
 

Fig. 3  Our amplifier. 

 

As you can see, the instrument controls are organized in three sections (neglecting the 

obvious power switch).  Let’s go through them: 

 To the left is the Signal section.  It includes the signal input BNC jack and a 

sensitivity setting.  The sensitivity setting is essentially a selectable gain in the amplifier 

stage (A) of Fig. 1.  The sensitivity can adjusted from 1 μV up to 250 mV full scale in 

overlapping steps. 

The Reference section includes a BNC reference input jack and some controls that 

manipulate the phase shift applied to the reference signal.  These include a continuously 

adjustable knob that varies from 0°-90°.  To get larger phase shifts, you use this knob in 

conjunction with the Quadrant buttons, which add an additional 90° and 180° (or both) 

when pushed.  An LED indicator glows red when the instrument’s internal circuitry 
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cannot lock on any recognizable signal.  So, all’s well if the light is off (unless you forgot 

to turn the power on—there’s no power-on indicator!).  Finally, the Mode button selects 

whether to lock onto the input reference frequency f, or at twice this frequency 2f.  This is 

useful when your response of interest doesn’t care about the polarity of the modulation, 

and so occurs twice as fast.  An example of such a case is the AC flicker of light bulbs: 

they’re supplied with 60 Hz current, but since the filaments are indifferent to current 

direction, light is radiated with a 120 Hz flicker. 

The output stage consists of the actual signal output and some other controls.  The 

actual output can be viewed on the analog meter which displays ± the full-scale 

sensitivity.  Despite the prejudice of the young against anything non-digital, the meter is 

very useful as a quick guide to what’s happening.  Along with the meter output there is an 

analog output (BNC) which can be connected to a DMM or oscilloscope.  This output is 

calibrated to give  ±1.00 V at full scale.  So, for example, if this voltage is 0.580 V on the 

250 mV range, the signal reading is μV145250580.0 =× .  An over-range light informs 

you when the sensitivity is set too high. 

The Zero knob and offset buttons allow you to subtract an unwanted DC offset — 

we won’t be concerned with these.   The offset button should always be set to off.  

Finally we come to the filter controls.  These concern the low-pass filter (L.P. of 

fig. 1) operation, and we’ll investigate these in some detail.  The time-constant settings 

select how sharp the L.P. filter is, i.e. how much low-frequency noise is allowed to pass 

and corrupt our true DC level.   

A thoughtful person might wonder just why we want this adjustable – don’t we 

want it as sharp as possible to get the best reading?  The answer is a matter of 

practicality.  A Low-Pass filter actually corresponds to a time averaging of the signal (see 

App. A).  If there is a change in the signal, you must wait for a period of about 5 time-

constants for the averaging to settle to a good result.  An infinitely sharp filter would 

imply an infinite wait.  Thus, there is a trade off between how quickly you want to make 

a measurement, and how much low-frequency noise you’re able to tolerate.  Additionally, 

it’s usually the case that you want to make multiple measurements for different values of 

the stimulus s:  How often you vary s (or how fast you can scan s) depends on how much 

unwanted noise you’re willing to accept. 
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We now need to discuss low-pass filters in a bit more detail.  While the following 

should be familiar to you from your electronics course, it’s best to review the material 

here, in the context of our specific instrument.   

As pointed out in appendix A, a first-order low-pass filter with time constant τ  

has a transfer function 

 

2)(1
1)(
ωτ

ω
+

==
in

out

V
VT . 

 

Here, we’re ignoring the phase-shift a signal encounters in traversing the filter 

and concentrating on the attenuation only.  Notice that this attenuation depends only on 

the product ωτ .  Figure 4 displays T as a function of ωτ . 
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Fig. 4  First-order low-pass filter. 

 

As expected, signals with frequencies small compared to τ/1  are passed un-attenuated.  

For higher frequency signals, 1>>ωτ , the attenuation goes as ωτ/1→T  (which 

engineers like to refer to as “a 6 db per octave rolloff”).   The frequency at which the 
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attenuation drops to 2/1=T  is τω /32/1 = :  The larger the time constant, the sharper 

the filter. 

 Our EG&G lock-in employs two 1st order filters cascaded; a pre- and post filter.  

The pre-filter has a wide selection of time constants to choose from, ranging from ms up 

to 30 sec.  The post filter only has two choices: 0.1 and 1 sec, or can be removed from the 

signal path altogether (turned ‘off’).  The utility of the post filter is in suppressing noise 

at larger frequencies.  In fact two cascaded 1st order filters make a 2nd order filter with an 

attenuation 2/1 ω→T  at large frequencies.  Figure 4 shows a plot of a 2nd order filter’s 

transfer function that is made from two cascaded 1st order filters. 
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Fig. 4  2nd order response (solid black line) formed from two cascaded 1st order filters, 

one with s1.0=τ (dashed red) and another with s1=τ (green dot-dashed). 

 

The thing to notice here is that the low-frequency transmission of the filter is determined 

almost exclusively by the stage with the largest time-constant ( s1=τ ).  However, the 

presence of the low-τ  stage ( s1.0=τ ) creates a significant reduction of high-frequency 

transmission. 

 The general scheme of operation is thus the following: with the post filter off, one 

first adjusts the pre-filter time-constant to some desired value.  Then the post filter is 
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engaged, choosing its time constant as less than or equal to that of the pre-filter.  This 

increases the high frequency noise rejection.  The limited choice of .1 or 1 second for the 

post filter’s τ  reflects this secondary role.  (Clearly, if you’re using pre-filter time 

constants less than 0.1 s, noise isn’t a problem and the post filter is unnecessary.) 

 

Experiment 1: 
 Let’s now experiment in the semi-real world with our lock in.  We’ll use a 

simulator box to provide a source of well-controlled signal and coherent noise to our lock 

in.  Figures 6 and 7 show the box and its functional workings: 

 

 
Fig. 6  Block diagram of the simulator box. 

 

 
Fig. 7  The simulator box. 
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The output of our simulator box is the sum of a ‘signal’ and a ‘noise’ component, either 

of which can be turned off.  The signal part consists of a 1.00 kHz sine wave whose RMS 

amplitude can be set to 200, 20, or 2 mV.  A ‘Signal Reference’, in phase with the signal, 

is provided for the lock-in’s reference.  The noise component is a sine wave of frequency 

variable over a range of about 0.98 to 1.30 kHz, with a similar range of amplitudes.  A 

reference output for the noise is also provided for accurately measuring the noise 

frequency. 

 

Step 1:  Setup. 
We’ll use the simulator box as an input to the lock in, and monitor the lock-in’s 

response by several means:  The lock-in’s panel meter, and the scaled output on both a 

digital multimeter (set to read DC voltage) and an oscilloscope.  Using BNC cables, 

connect the equipment as shown in Fig. 8. 

 

 
Fig. 8  Setup for experiment 1. 

 

The purple connection from the noise reference to channel 2 of the scope is an optional 

connection, which can be used later for accurately measuring the noise frequency.  Use 

Channel 1 set to DC coupling. 
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Step 2:  Signal with no noise. 
Now we’ll look at the lock-in’s response to only a pure sine wave at the in sync 

with the lock-in’s reference signal.  On the simulator box turn on the signal switch and 

turn off the noise switch (only the signal LED should be lit).  Adjust the signal amplitude 

to ‘÷1’, which produces a 1.00 kHz signal with an amplitude of 200 mV (RMS). 

 

IMPORTANT NOTE:  Despite the cookbook style of this write up, you’re 

encouraged to be creative.  For instance, at this point you could check the input by 

patching it directly from the simulator directly into the scope.  These sorts of maneuvers 

are good skills to acquire. 

 

Now, with our known input established look at lock-in’s response.  The first thing 

to play with is the phase adjustment.  Because the square-wave reference signal is 

designed to be in phase with the sine wave, you should see a maximum (200 mV) on the 

meter when you adjust to 0°, a minimum (-200 mV) at 180°, and a null reading at 90° and 

270°.   

Once you’re familiar with the phase adjustment, we need to be more precise with 

our measurements.  You will note that the meter doesn’t quite show exactly 200mV at 

maximum.  There is an overall calibration error with our lock-in that will be important to 

us in the last experiment of this lab when absolute measurements are required.  We need 

to establish a correction factor.  To do so, use the DMM reading of the output for 

accuracy.  Carefully adjust the phase setting for maximum output and acquire a 

measurement (recall that you need to multiply the DMM reading by the full-scale 

sensitivity), and compare this with the 200 mV (RMS).  Repeat this using different inputs 

amplitudes (20.0 mV and 2.00 mV), and using as many possible sensitivity settings as 

possible.  Repeat this procedure with the phase shifted 180°.  Hopefully you will find a 

standard correction factor, independent of the sensitivity.  When I did this my average 

correction factor was 

 

LOCKINTRUE VV ×= 12.1 . 
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Step 3:  Noise with no signal. 
 Now, turn off the signal and turn on the noise.  Switch the noise amplitude to the 

‘÷1’ scale (200 mV RMS).  Noise the noise frequency adjustment clockwise a ways.  

Now we should have an input whose frequency is higher than the reference frequency.  

We thus expect the lock-in’s output to be an attenuated  sine wave oscillating at the 

difference frequency.  Use the oscilloscope to look at the lock-in’s output. For 

frequencies too close to the 1kHz reference the scope output is somewhat useless since 

the difference frequency πω 2/Ω−=Δf  is so low; however in this situation the panel 

meter will show you the oscillating behavior.  At larger frequencies, the panel meter can’t 

respond but the scope will let you see the behavior.  Play around:  What you should see is 

that as the frequency is increased (1) the output oscillates faster and (2) the amplitude of 

oscillation decreases.   

Now, let’s get a bit more analytical.  Make sure the post filter is OFF.  Our digital 

Tektronics scopes have a measurement feature:  set it to measure the RMS amplitude and 

frequency of the lock-in’s output (if you don’t know how, get someone to help).  Now 

select a lock-in time constant τ  (i.e. 0.1 sec).  With τ  fixed vary the noise frequency 

and, using the scope, record the amplitude and difference frequency5 for a number of 

frequencies over as wide a range as you can.  (You’ll have to keep changing the sweep 

and range settings).  Repeat this for other time constants. 

 With this data, convince yourself that the lock-in is suppressing the noise in the 

fashion of a 1st order filter.  One way to do this is to note that only the product fx Δ= τ  

enters into the attenuation, and that  

 

2

2222

)2(
111

π
x

VVV ininout
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5 And alternate method is to use channel 2, measure the noise reference frequency and subtract 1 kHz.  You 
should at least do this once and compare, so that you really believe we’re seeing the difference frequency. 
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So, plotting 2)/1( outV  verses 2x  should give a straight line.  Furthermore, performing a 

linear fit should give you a slope and intercept consistent with our mV 200 =inV  RMS, 

corrected for our calibration error. 

 Next, let’s see about the post filter.  Select a time constant and noise frequency 

and record the output amplitude and frequency.  Now turn ON the post filter.  Record the 

output amplitude for both the =Pτ 0.1 and 1 sec post-filter settings.  Using the post filter 

should further reduce the amplitude by a factor of  [ ] 2/12)2(1 −
Δ+ fPπτ . 

 

Step 3:  Signal and noise together. 
 Finally, turn both the noise and signal channels on.  Play around with the settings.  

Of particular importance is to see the behavior of noise at a frequency very close to the 

reference.  Of course, what you have is the oscillating noise superimposed atop of the DC 

signal level.  In practice it sometimes happens that the beats are so slow you see the meter 

drift about an average position.  If the drift is too slow, you don’t notice the oscillation 

and take a reading in error. 
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D.  Chopping and the light-bulb experiment. 
 

The power of lock-in detection can best be appreciated by considering the simple 

experiment outlined in figure 3.  We’ll be performing this as part of the laboratory.   

 
Fig. 9  The Light Bulb experiment. 

 

Here, the light from a small flash-light bulb is chopped by a rotating mask.  It’s 

very common in optical experiments to achieve intensity modulation in this way, and 

optical choppers of high quality are available commercially.   Because the signal is 

periodic, the lock-in detects the signal at the fundamental frequency.  Some signal power 

is lost into higher harmonics of ω as a consequence, but it’s a small price to pay for the 

ease of modulation.  

The point of the experiment is to see the amazing ability of lock-in detection to 

measure the small signal of the bulb in the overwhelming presence of hall lights, coke 

machines, etc—even at very large distances. 

For the moment, we’ll assume the voltage from the detector is proportional 

(constant C) to the light intensity.  We might suspect that 
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2r
CI

V Bulb
Det = , 

 

where r is the distance between the bulb and the detector, and IBulb is the intrinsic light 

output of the bulb.  Since we modulate IBulb, our lock-in output is 

 
2/constant some rVout = . 

 

In our experiment we will try to verify the inverse-square law.  To do so, we will measure 

Vout at a variety of distances down the hallway.  The slope of a plot of outVlog  verses 

rlog will give the power law, hopefully somewhere near 2.    

DISCLAIMER:  Before we get started, let’s emphasize that the 2−r  law would 

not be valid even in a prefect hallway (unless the walls are painted black).  Reflections 

from the floor, walls, and ceiling that happen to reenter the detector cause a discrepancy 

that disappears only at fairly large distance (depending on the average reflectivity).  To 

further confound the problem coke machines, doorways, overhead lights, etc. all 

confound the issue by masking reflections at certain points.  Look at this example: 
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Fig. 10  Short-range data. 
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This plot shows some data I took close to the source:  we might expect outVr ×2  to be 

constant.  The gradual rise is just what would be expected by considering reflections, and 

the dip occurs where the first soda-pop machine starts to occult these reflections from one 

wall!  So, don’t expect perfect results, the actual point is to become familiar with 

measuring progressively weaker signals as you move down the hall. 

 

Procedure. 

 

    
Fig. 11:  Detector and chopper components. 

 

1.)  Noise:  hook detector to scope and look at DC background plus 120 Hz ripple. 

2.)  Phase:  detector near chopped bulb:  adjust phase for max – then leave it. 

3.)  chopper freq:  put detector far from bulb: 

      Bulb off:  try and adjust chopping freq to get min signal  (see appendix C) 

      Bulb on and off: can you see it? 

4.)  take readings down the hall  VDC and Vlockin – practice with sensitivity and time 

constant settings.  Beware low freq noise beats:  Use a max/min recording DMM, average 

gives signal and spread gives error. 

5.)  take good readings near end of hall – more data/distance since this is where we 

might hope to get a real 1/r2 power law. 

Fiddle with chopper speed, hooked to detector minimize noise. Remember phase. 
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Analysis 

1.) Plot data, log-log plot to get power law.  Perhaps just long-range points. 

2.) More impressive is to consider signal/noise you are able to extract vs. diatance. 

3.)  extra credit:  read appendix B and apply corrections for non-linear detector.  Make 

any difference? 
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E.  Measuring the Faraday effect. 
 

As a more serious example of lock-in experimental design we consider the 

Faraday effect:  When a beam of polarized light traverses a material in the direction of an 

external magnetic field, the angle of polarization is found to rotate slightly.  The angle of 

rotation θ  is found to be proportional to the strength of the magnetic field, and to the 

distance traveled through the sample.  The constant of proportionality (V) is called the 

Verdat coefficient.  We have  

BdV=θ . 

 
While the Verdat coefficient is a property of a specific material (App. 2), in 

practice is pretty much the same for most substances:  ≈V  for solids and liquids.  

Consider then the rotation of light in our big lab magnet where we can attain kGB 12= .  

The maximum sample length would be the pole-face separation 3.4=d  cm.  (Perhaps we 

steer the light in and out with fiber optics?)  Under these (extreme) conditions, the light’s 

polarization would rotate by about . 

To measure the Verdat coefficient we employ the experimental setup shown in 

Fig. 4:  Our sample is placed in the center of a Helmholtz coil pair (not shown) so that a 

magnetic field lies along the sample axis.  The magnitude of B is modulated by driving 

the coils with an AC current, so that tBtB ωsin)( 0= .  A linearly-polarized laser beam is 

passed through the sample axis, then through a sheet polarizer, and detected with a 

photodiode.  The Faraday effect rotates the angle of polarization by θ  as the beam passes 

through the sample.  For the moment, let’s consider the polarizer as rotated by an 

unspecified angle Ω  with respect to the incident polarization direction as shown. 

To understand how we can use lock-in detection to measure V , one needs to 

know a only small amount of circuit theory.  The photodiode works like an ordinary 

diode except that when a photon strikes it’s junction a certain number of electron-hole 

pairs are produced.  These pairs are drawn out of the junction when the device is biased. 

When connected in reverse bias as shown, only a tiny (dark) current flows in the absence 

of light.  When light of intensity I is absorbed a photocurrent flows proportional to the 
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light intensity; we can write this as Iβ=i .  This voltage must flow through the resistor, 

and so a voltage Rv Iβ=  develops across R.  (We must be careful to measure v with an 

instrument whose impedance is very much larger than R.  In our detector VVcc 9=  and 

Ω= XXXR .) 

Next, consider the light intensity I  striking the photodiode.  Supposing that the 

laser intensity, once it’s traversed the sample, is 0I  Malus’s law for the polarizer gives  

 

)(cos2
0 θ−Ω= II . 

 

Since θ  is small, we can expand this in a Taylor series about 0=θ yielding 

 

( )θ)sin()cos(2)(cos2
0 ΩΩ−Ω≈ II . 

 

Now, since B is modulated so is the rotation angle 

 

ttVdB ωθωθ sinsin 00 ≡= . 

 

The voltage across the resistor thus has an AC and DC component: 

 

ACDC vvv += , 

 

where 

 

)(cos2
0 Ω= IβRvDC  

 

and 

 

tRvAC ωθβ sin)sin()cos(2 00 ΩΩ−= I . 
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Now,  ACv  is what we will measure using lock-in detection with a tωsin  reference.  To 

make this quantity as large as possible, we see that we must set °=Ω 45 .  This is in 

keeping with our earlier discussion:  when modulating θ  the lock-in scheme measures 

0/
=θθdId , and we can maximize this signal by adjusting our free parameter Ω .   

So, setting the polarizer’s pass axis at °45  to the incident polarization, measuring 

ACv  with the lock-in and DCv  with a DMM we get 

 

02
1
IβRvDC =     and    002

1 θβIRvlockin =  

 

(where the 2  comes from the RMS calibration of the lock in).  Taking the ratio 

 

02θ=
DC

lockin

v
v

 

 

eliminates the unknown quantity 0Iβ .  Solving for the Verdat coefficient finally yields 

 

DC

lockin

RMSDC

lockin

v
v

dBv
v

dB 2
1

2
1V

0

== . 
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Fig. 4  Schematic experiment for observing Faraday rotation. 

 
 
Proceedure: 
 
Monitor output:  Vrms (measured by scope) gives measure of Brms of helholtz coil;  
using Bell gauss meter in AC mode I measured: 
 

RMSRMS VB ×= G/mV) 00780.0(  . 
 
1.  Polarization setup:  Use DMM and DC output of detector.  Adjust θ to find max and 
min output  -- don’t saturate the detector, output should be less than 5V.  Adjust R in 
needed.  (you can us scale on polarizer to mark 0 deg. )  Set polarizer to 45 deg. 
 
2.  Put in sample (water and ethanol in culture bottles).  Turn on coils and monitor.  
Measure detector output with lockin referenced to helmholtz syn. out. 
Take measurements of VDC (DMM)  and Vlockin for various settings:  Vary BRMS and 
modulating frequency, both can be measured by monitor output with scope. 
 
3.  Calculate angle and Verdet as function of B0.  Compare with measured values at 
640nm.
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APPENDIX A:  Low-pass filters in the time domain. 
 

We’re quite used to the idea of circuit behavior in the frequency domain, and 

circuit analysis is greatly simplified by Fourier-transforming the time-dependent 

differential equations into algebraic equations of frequency.  This is the method of 

complex impedances.   It’s interesting to investigate the behavior of a low pass filter in 

the time domain.  From such a study we can see the connection between frequency 

filtering and time averaging.  Consider the following block diagram: 

 

 
Fig. A1  Low pass filter showing a representative frequency response. 

 
 
The L.P. box transforms an input signal f into some output function g.  Here we can 

consider f and g as functions of either time or frequency, their connection being the 

Fourier transform, e.g.  

 

∫∫
∞

∞−

+
∞

∞−

− == t )(
2
1)(        and        )(

2
1)( detffdeftf titi ωω

π
ωωω

π
, 

 

with similar relations connecting )(tg  to )(ωg  and )(tL  to )(ωL .  The frequency-

dependent transfer function L(ω) connects the input and output.  A typical low-pass 

dependence on ω is sketched in the Fig. A1, the filter passes low frequency components 
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and blocks those at higher frequencies.  We might define some characteristic frequency 

Cω  (as shown) to roughly define the cutoff region.   

The frequency-dependent relation between input and output is simple: 

 

)()()( ωωω fLg = . 

 

This relation can be transformed into one in time by taking the inverse Fourier transform.  

The result is the convolution theorem 

 

∫
∞

∞−

−= τττ
π

dtfLtg )()(
2
1)( . 

 

The simple, algebraic relation in the frequency domain produces a non-local relation in 

time; that is the output g at time t depends on the input f , not only at t, but at all other 

times as well.  For physical systems we expect causal behavior:  the output should not 

depend on the input at future times.  Indeed, the differential equations which describe the 

time evolution of the system are inherently causal.  Thus we expect, and demand, that 

0)( =τL  for all 0<τ .  Causality puts a severe constraint on the functional form of L(ω) 

known as the Kramer-Kronig dispersion relations:  the real part of L(ω) uniquely 

determines the imaginary part, and vice-versa.   

 In general we then have the relation that 

 

∫
∞

′′−′=
0

)()(
2
1)( tdttftLtg
π

, 

 

where all functions are real valued (and hence L(ω) must be complex).  We see that the 

output is some kind of weighted average of the input over all past times.   This holds true 

for any system with a transfer function L(ω), the manner of weighting dictated by its 

Fourier transform )(tL ′ . 
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 Let’s now consider how the low-pass character of the filter translates into the time 

scheme.  To do so consider the simple 1st order low-pass RC filter of Fig. A2. 

 
 

 
Fig. A2.  1st order RC low-pass filter 

 

To solve for L(ω) we simply replace the resistance and capacitance with their 

complex impedances, R and 1/(iωC) respectively.  The transfer function is then obvious 

as a frequency-dependent voltage divider.  After a small amount of rearrangement we 

have 

 

ωτ
ω

i
L

+
=

1
1)( , 

 

where we’ve introduced the familiar RC time constant RC≡τ .  To find the time 

dependence of the transfer function, we perform the inverse Fourier transform on L(ω).  

Using contour integration and residue theory makes the integral quite easy to perform:  

Since there’s only a simple pole (ω = i/τ) in the upper complex-ω plane, causality is 

ensured because the integral is zero for times t < 0.  The result is τπ τ /2)( /tetL −= , and 

substituting this back into the convolution relation gives us 

 

tdttfetg t ′′−= ∫
∞

′−

0

/ )(1)( τ

τ
. 
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There are two points worth noting:  Firstly, for an input that has been non-zero only 

recently ( τ<<t )  so that 1/ ≈′− τte , the output is proportional to the integral of the input.  

The circuit of Fig. A2 is then referred to as an ‘integrator’.  Secondly, g(t) is a true 

average of  f(t) in the sense that the weighting function is normalized:  i.e.  

∫ =−− 1/1 dte t ττ .   

Let’s check up on the time-domain convolution result.  First, let’s consider a unit 

sinusoidal input  

 

)sin()( ttf ω= . 

 

We know immediately from our frequency-domain experience that the output will be a 

phase-shifted sine-wave with an amplitude diminished by a factor of  1−L .  Let’s see if 

we can recover this basic feature using the time-domain description.  The integral is a 

little tedious: 

 

tdttetg t ′′−= ∫
∞

′− ])(sin[1)(
0

/ ω
τ

τ . 

 

Transforming the integration variable to ttz ′−= gives 

 

dzzeetg
t

z
t

]sin[)( /
/

∫
∞−

−

= ω
τ

τ
τ

. 

 

This evaluates (after a little algebra) to the expected result 

 

[ ] )sin(
)(1

1)cos()sin(
)(1

1)(
22 φω

ωτ
ωωτω

ωτ
−

+
=−

+
= ttttg , 

 

with the frequency-dependent phase shift  
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⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
= −

2
1

)(1
sin

ωτ
ωτφ . 

 

Obviously, for sinusoidal inputs it’s easier to work in the frequency domain using the 

phasor representation, but we should be reassured that the time-averaging description of 

the L.P. filter gives us the results we expect. 

 Our second example should prove equally reassuring and is a case in which the 

time-domain description is the easier approach.  Consider a constant input that changes 

discontinuously from Af  to Bf  at 0=t : 

 

⎩
⎨
⎧

≥
<

=
0
0

)(
tf
tf

tf
B

A . 

 

Once again transforming the integration variable gives the output 

 

dzzfeetg
t

z
t

∫
∞−

−

= )()( /
/

τ
τ

τ
. 

 

This divides into two cases.  First, for 0<t  we have 

 

[ ] A
t

A
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z

A

t

fefedzefetg ==
⎥
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)( . 

 

This is good: if the input has always been Af  we certainly expect the output to be the 

same.  Next, for 0≥t we have  
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This exponential ‘decay’ of an RC circuit is derived in all introductory textbooks (from 

the differential equation, usually with Af  or Bf  zero).   As a practical point, how long 

does it take for the output to accommodate this sudden input change?  We can look at the 

fractional error ε  between the output at time t and its asymptotic value: 

 

τε /)( t

B

BA

B

B e
f

ff
f

ftg −−
=

−
= . 

 

Obviously, the larger the input jump the longer we must wait for the output to settle to a 

given accuracy.  For guiding purposes, let’s presuppose an input jump of order unity (i.e. 

the input decreases by a factor of ½ ).  In this case, our output decays to within 1% of Bf  

in a time ττ 5)100ln( ≈=t . 

This is an important point to remember when using lock-in amplifiers.  When the 

input changes for some reason (perhaps someone walks in front of your source) you need 

to let the instrument settle long enough to get an accurate reading. 

 Finally, let’s consider the frequency and time ranges we’re considering — and 

how they’re related.  The time-domain description can be roughly summarized by the 

time constant τ  :   the circuit really only averages back over a time interval of a few τ’s.  

In the frequency domain we can loosely define the ‘cutoff’ Cω  as the frequency at which 

|)(| ωL  drops to ½.  Thus the circuit can loosely be said to ‘pass’ frequency components 

of the signal below τω /3=C  and ‘reject’ those above. 

 Remember in the case of a lock-in amplifier that we are trying to extract the DC 

component of the manipulated signal.  Our RC–filter example illustrates the general 

nature of the dilemma.   To get the true DC component, we would need a very good filter, 
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say 0→Cω , but to do so implies that we must average the signal over a long time 

∞→τ .  No matter the exact nature of the low-pass filter used, we end up with an 

uncertainty relation6 in time and frequency 

 

constant. some ≥Cωτ  

 

If our signal of interest varies with time, it is of course not really DC.   We must 

then compromise by selecting a time constant small compared with the time variation of 

the signal.  In doing so, we invariably increase the amount of noise included at non-zero 

frequencies. 

                                                 
6 Uncertainty relations occur between any pair of variables connected by the Fourier 
transform.  In quantum mechanics they arise because of the Fourier connection between 
energy and time or position and momentum variables. 
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APPENDIX B:  Chopping and harmonics. 

 
Older models of lock-in amplifiers (like ours!) use a simpler method for phase 

sensitive detection:  As mentioned previously, multiplying two voltage signals accurately 

involves sophisticated circuitry.  However, it’s relatively easy to change the polarity of a 

signal, i.e. multiply it by 1± .  This is the scheme used in older, more affordable units.   

Suppose we pass our input signal for a time T, invert it for another time T, and 

keep repeating this process.  We are multiplying the input by a square wave (unit 

amplitude) of period 2T.  The Fourier expansion of this function is a sum of odd 

harmonics of our reference frequency T/π=Ω :  

 

tn
n

tf
n

ref Ω= ∑
=

sin14)(
,5,3,1π

. 

 

Now consider an input signal )(tV  that is periodic (but not necessarily sinusoidal) 

with fundamental frequency ω .   Most generally, it can be expanded as 

 

( )∑
=

+=
,3,2,1

cossin)(
m

mm tmBtmAtV ωω . 

 

Consider the product )()( tftV ref .  It will be a sum of terms of two types involving the 

products  (m and n integers, with n odd) 

 

A.)  tntm Ω× sinsin ω  

B.)  tntm Ω× sincos ω  

 

We are as usual concerned with any DC (or near DC) results that are passed by the low-

pass filter.  As already discussed, terms of type A will give a DC contribution if 

 

Ω= nmω . 
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Since tntm Ω× sincos ω  is related to the sine of the argument sum and differences, terms 

of type B will never give a strictly DC contribution, however if  

 

0≠Ω− nmω   but small, 

 

then we’ll have a slowly oscillating noise contribution that will be passed through the 

filter.    

Obviously if )(tV  is an interfering signal we want to reject, we’d better arrange 

for our reference frequency Ω  to be incommensurate with ω .  However, in practice what 

do you do — there is a rational ratio as near to Ω/ω  as we care to approximate, and all 

these terms will pass through the filter?   What we need is to choose nm /ω≈Ω  so that 

the smallest possible values of m and n are still very large.  (This is because our products 

are weighted by factors of  nAm /  or nBm / , and mA  and mB  both decrease at least as 

fast as m/1 .)  More practically, we need to avoid frequencies where m and n are small!  

Hence, for a background light signal at 120 Hz, we certainly need to avoid reference 

frequencies that are low harmonics.  Fig. C1 shows the difficulty: 

 
Fig. B1  Potential interference from a 120 Hz noise source. 

 

Figure C1 is a histogram plot of the worst-case noise intensity we might expect from a 

‘general’ 120 Hz noise source.  It’s been created by weighting all the harmonics for 
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000,10, ≤nm  by nm/1  as discussed, and summing these amplitudes into bins 1 Hz 

wide.  You can see the problem, we want to stay as clear of the huge harmonics as 

possible else the low-pass filter will let them through —but often some ‘biggish’ peak 

lies directly between two huge ones.  We’re left experimenting to find a useful reference 

frequency with the noise as low as we can attain. 

While we’re at it, there’s one (final) lesson we’re in a position to derive.  When 

)(tV  is considered as a general signal, with Ω=ω ,  the DC component of  )()( tftV ref  is 

 

∑
=

==
,...5,3,1

2)()(
n

n
DCrefDC n

A
tftVV

π
. 

 

Suppose for the moment that we have a pure sinusoidal input (only AA =1  is non-zero).  

Then π/2AVDC = .  The true RMS average of the pure sine is 2/A , so we calibrate our 

lock-in by scaling it as DCLockin VV )22/(π= .  The true RMS value of a general periodic 

signal is by definition  
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Our calibrated lock-in responds to the signal as   

 

∑
=

=
,...5,3,12

1
n

n
Lockin n

A
V . 

 

So, the lock-in doesn’t necessarily give the true RMS result for non-sinusoidal signals!   
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APPENDIX C:  Our ‘bad’ light-bulb detector. 
 

 

In our light-bulb experiment, we purposely use a simple detector based on a 

photo-resistor to demonstrate the power of phase-sensitive detection.  However, this 

‘simple’ detector actually involves us with some complications which are interesting and 

very instructive.   

Let’s look at how it works:  A photo-resistor is actually a semiconductor (CdS) 

device whose resistance PR  depends on ambient light intensity I.  Its resistance 

decreases with increasing intensity.  To get a voltage signal that monitors light intensity, 

we employ it, along with a fixed resistor R, as part of a voltage divider circuit:   

A power supply provides a stable source 

V 5=CV , and the output voltage is simply 

 

C
P

P
out V

RR
R

V
+

= . 

 

Note that even if PR  depended linearly with 

light intensity (which it doesn’t!) the output 

voltage would not.  We have a nonlinear 

detector which is the source of our 

complications: recall that the lock-in 

amplifier, under the conditions met in our light bulb experiment, is proportional to the 

chopped light intensity BulbI  and dIdVout / .  Now, the detector output produces a large 

DC voltage DCV  determined by the average hall light (neglect the smaller 120 Hz ripple).  

Superimposed on this is the small, chopped light-bulb voltage we want to measure with 

our lock-in.  Our derivative term is thusly determined by the DC level 

 

dI
dV

dI
dV DCout ≈ . 
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If the background lighting were constant there would be no trouble, however as we move 

the detector up and down the hall, we encounter darker and lighter areas and hence DCV  

and so dIdVout /  change from site to site.  This is where the non-linear nature of the 

detector manifests itself.  If we’re serious about our experiment, we should correct for 

this.   

To do so we need to know the derivative.  The easiest way to do this is just to 

measure it.  I’ve done this by using a super-bright LED and some neutral density filters to 

produce known (relatively) light levels.  Here are my results: 
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Fig. C1  Measured detector response. 

 

The response is, as expected, pretty non-linear.  The power-law fit to my data 

gives a rough guide to the response is 398.015.1 −×≈ IVout .   Let’s write this for the 

moment as βα −= IVout .  We then have that 
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out
out V

I
I

dI
dV ββα β −

=−= −− 1)( . 

 

We don’t know I, but we can invert our fit so that IVout =+βα )/( .  We therefore have 

 
β
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+
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⎞
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V
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So, to correct our light-bulb data for the variations of ambient light at different points 

around the hall, we need to divide the lock-in’s reading by dIdVout /  evaluated at DCV : 

 

1)( −
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This is why we measured DCV .  For careful work, these sorts of considerations are 

important.  Of course, for careful work we might have chosen a better detector scheme — 

such as our photodiode setup used for the Faraday effect which is very linear. 
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