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Objective: In this experiment, you will measure the small energy shifts in 
the magnetic sublevels of atoms in "weak" magnetic fields. The visible light 
from transitions between various multiplets is dispersed in a 1.5 m grating 
spectrograph and observed with a telescope. Each observed line consists 
of a group of closely spaced unresolved lines from the emissions among the 
different magnetic sublevels within each multiplet. Using a polarizer and 
Fabry-Perot interferometer, ring patterns are observed within each spectro­
graphically resolved line. The patterns are measured as a function of the 
strength of the magnetic field to determine the g-factor of the multiplet. 

1 Theory 

1.1 Magnetic moment 

The electron (charge -e, mass m) has an intrinsic spin angular momentum 
8 and an intrinsic magnetic moment Its that can be expressed as: 

flB 
Its = -2--';8 (1) 

where flB = eli/2mc is called the Bohr magneton and is effectively the atomic 
unit of magnetic moment. (The factor 2 in Eqn. 1 is a prediction of Dirac's 
relativistic theory of electron spin, and when quantum electrodynamic effects 
are included increases by about 0.1 %) 

If a spinless electron is orbiting a nucleus in a state of angular momentum 
L, it behaves like a current loop with a magnetic moment It.e proportional to 
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i: 
J1B

J.t.e = --i, (2)
'Ii 

The nucleus also often has a magnetic moment, but because of the large 
nuclear mass, it is much smaller than that of the electron, and at the resolu­
tions involved in this experiment its effects will be unobservable. 

When electron spin and orbital angular momentum are simultaneously 
taken into account, the magnetic moment of each electron in the atom be­
comes: 

J1B (J.te = -- 2s + i) (3)
'Ii 

For an N-eleetron atom, the total magnetic moment is thus: 

(4) 

or 
1£ = _J1B (25 + L), (5)

'Ii 

where 5 = LSi and L = L ii- Since J = L + 5 this is usually written: 

J1B 
1£ = -r;(J + 5). (6) 

1.2 Magnetic energy 

The energy V of a magnetic moment 1£ in a uniform magnetic field B depends 
on the relative angle between them: 

V = -1£. B (7) 

With the B-field taken along the z-direction (and having a strength B) this 
becomes: 

(8) 

In the absence of a magnetic field, the unperturbed energy levels of a free 
atom are always rigorously characterized by the quantum numbers J and M 
of total angular momentum and its projection. This means that for a level a 
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with a state vector laJM) (a represents all other quantum numbers of the 
state) the standard eigenvalue equations hold: 

MfilaJM) (9) 
J(J + l)fi2IaJM) (10) 

In the absence of any preferred direction in space, the levels are all de­
generate in M. We will only consider the weak-field case where the magnetic 
energy !:i.E can be obtained using first order perturbation theory. The pertur­
bation V removes the M-degeneracy, though J and M remain good quantum 
numbers. The energy shift of the state laJM) is given by: 

!:i.E = (aJMIVlaJM) (11) 

or 
!:i.E = B(aJMIJtzlaJM). (12) 

Jtz is the z-component of the vector operator J-t. The following operator 
identity-a special case of the Wigner-Eckhart theorem-is central to our 
problem. It is valid for states of angular momentum J for any component 
K v of any vector operator K. 

(aJMIKvlaJM) = (a~~~~~~~) (aJMIJ. KlaJM). (13) 

Applied to the magnetic energy where K v = Jtz and (aJMIJzlaJM) = 
Mfi this gives: 

!:i.E = -B fiJ(J
M 

+1) (aJMIJ . J-tlaJM) (14) 

With J-t given by Eqn. 6 this becomes: 

!:i.E = BM(aJMIJ2 +J. SlaJM) (15)
JtB fi2J(J+l) 

With (aJMIJ2laJM) = fi2J(J + 1) this gives: 

!:i.E = BM (1 (aJMIJ· SlaJM)) (16)
JtB + fi2 J(J +1) 
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Thus the magnetic energy is reduced to determining the matrix element of 
the projection of S on J. The matrix element is independent of the choice 
of the z-axis and will be independent of M. The weak-field Zeeman effect's 
dependence on M lies entirely in the proportionality expressed in Eqn. 16. 
The term in parentheses is called the g-factor of the level 

(aJMIJ· SlaJM) 
(17)gcxJ=I+ n?J(J+l) 

and Eqn. 16 is then written 

(18) 

1.3 Zeeman Effect in Russell-Saunders Coupled Atoms 

For many low-Z atoms, Russell-Saunders (LS) coupling holds reasonably 
well. For an N-electron atom this means the the state laJM) is an eigenstate 
of L2, S2, and J2 where L = Eli, S = E Si and J = L + S. In this case, 
the state laJM) is often written 

laJM) = I,LSJM).	 (19) 

Since L = J - S, L2 = J2 + S2 - 2J • S, from which can be obtained 
J. S = HJ2 + S2 - L2). Thus using the eigenvalues of L2, S2, J 2, and Jz: 

(,LSJMIJ • SI,LSJM)	 (,LSJMIHJ2+ S2 - L2)I,LSJM) (20) 

1i2 

2 (J(J +1) +S(S +1) - L(L +1)) 

Substituting this in Eqn. 17 gives 

J(J+l)+S(S+I)-L(L+l) (21)
gcxJ = gLSJ = 1 + 2J(J +1) 

gLSJ is called the Lande g-factor and depends only on L, S, and J. 

1.4 Zeeman Effect in Neon 

Most levels in neon are not well described by LS coupling. Because of this, 
the g-faetor is not given by Eqn. 21. 
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The dominant configuration of the neon ground state is ls22s22p6 whose 
only energy level eSo) is well described by LS coupling. The next higher con­
figurations are the ls22s22p53s and ls22s22p53p which have, respectively, 4 
and 10 energy levels. It turns out that the common 9-electron core ls22s22p5 

is reasonably well described as a 2p-hole in a closed shell and would, as far 
as angular momentum is concerned, be similar to a single 2p electron, i.e., 
f..1 = 1 and SI = 1/2. 

Assuming for the moment that LS coupling holds, then adding a 3s 
electron (as in the lower configuration) with f..2 = 0 and S2 = 1/2, the normal 
rules for addition of angular momentum for L = l1 + L~ and S = 8 1 + 8 2 

imply that the only allowed value of L would be L = 1, (P-states) and that 
there would be two allowed values for S: S = 0 (singlet states) and S = 1 
(triplet states). Thus, the four states for this configuration would be 1PI, 
3 Po, , 12. You should be able to show that the ten states of the second excited 
configuration in LS coupling would be 1 So, 1PI, 1 D2 , 3 SI, 3 PO,I,2 and 3 D1,2,3' 

As already mentioned, neon is generally not well described in an LS­
coupled basis. The states can still be described in this basis, but they will 
not be pure states. They will be a superposition of such basis states. Because 
J and M are good quantum numbers, only basis states of the same J and M 
will mix. This limits the number of states in a superposition considerably. 
Actually, one should include the possibility that there are small admixtures 
from basis states of the same J and M from other configurations. This is 
called configuration interaction. This effect is typically small and only states 
from the same configuration will contribute significantly to a particular level 
in neon. Thus only the four basis states of the lower configuration could 
mix, and because two of them-the 3 PO,2 states-have J-values that appear 
only once, the J = 0 and J = 2 levels would be pure and well-described 
by LS coupling. However, the the two remaining J = 1 levels would be 
superpositions of 1 PI and 3 PI basis states. 

In the higher configuration, the 3D3 is the only J = 3 state and thus the 
J = 3 level must also be pure and well-described by LS coupling. There 
will be two J = 0 levels each of which will consist of a superposition of 1So 
and 3 Po; there will be four J = 1 levels consisting of superpositions of the 
1 PI, 3 SI, 3 PI, and 3 DI, and there will be three J = 2 levels consisting of 
superpositions of 1 D 2 , 3 P2 , and 3D 2 • 
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We might express a particular laJM) level as follows: 

laJM) = L: cil!LiSiJM) (22) 
i 

where the Ci are components of the unitary transformation between the states 
laJM) and I!LiSiJM). 

(23) 

If the Ci are known, you should be able to show that the 9 factor of that level 
would be given by a weighted sum of Lande 9 factors: 

(24) 

Thus determining the g-factor of a given state has been reduced to finding 
the coefficients Ci of the level in the LS basis. They depend on the strength 
of various electron interactions such as spin-orbit and coulomb interactions 
and can be be obtained to a good degree of accuracy from Hartree-Fock 
calculations. As already mentioned, for many levels in neon, to a reasonable 
degree, it is found that j = £1 + Sl of the p-hole, 9-electron core is an 
approximately good quantum number. The possibilities with £1 = 1 and 
Sl = 1/2 are j = 1/2 and j = 3/2. Thus the core can be 2 P1/2 or 2 P 3 / 2 and 
one or the other is often given in the designation of a given level. Another 
approximately good quantum number for neon is found to be k = j + £2' 
For the lower configuration, £2 = 0 and thus the only allowed k's are k = j. 
For the higher configuration, with £2 = 1, allowed k-values would be k = j, 
k = j +1, and k = j - 1 (if j =1= 1/2). Finally, of course, J which is a good 
quantum number, would-in this scheme of approximately good quantum 
numbers-be given by J = k + S2 and could therefore take on values of 
J = k +1/2 and J = k - 1/2. 

This scheme is called j k coupling and could be described by a state vector 

laJM) = l{3jkJM). (25) 

where j = '-1 + 8 1, k = j + '-2' J = k + 8 2, This scheme is illustrated in 
Table 1, where the wavelengths are given for the transitions between levels 
of the ls22s22p5 3s and the ls 22s22p53p configurations. The levels according 
to Paschen notation and some reference values from previous meausrements 
for g-factors are also given. 
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Paschen 
eS+lLJ ) 

core 

1 

core 

nR[k] 

-7 

J 

Obs. g 

Iss 
eP3/2) 

3s[3/2] 

J=2 

1.503 

Is4 eP3/2) 

3s[3/2] 

J=1 

1.464 

Is3 eP1/ 2) 

3s[I/2] 

J=O 

Is2 eP1/ 2) 

3s[I/2] 

J=1 

1.034 

2plO eP3/2) 3p[I/2] J=1 1.984 7032 7245 7439 8082 

2P9 eP3/2) 3p[5/2] J=3 1.329 6402 

2ps eP3/2) 3p[5/2] J=2 1.137 6334 6506 7174 

2P7 ep3/2) 3p[3/2] J=1 0.669 6217 6383 6533 7024 

2P6 eP3/2) 3p[3/2] J=2 1.229 6143 6305 6930 

2ps eP1/ 2) 3p[3/2] J=1 0.999 5976 6128 6266 6717 

2P4 eP1/ 2) 3p[3/2] J=2 1.301 5945 6096 6678 

2P3 eP3/2) 3p[I/2] J=O 6074 6652 

2P2 eP1/ 2) 3p[I/2] J=1 1.340 5882 6030 6164 6599 

2Pl eP1/ 2) 3p[I/2] J=O 5401 5852 

Table 1: Wavelength table (in angstroms) for the transitions between the lev­
els of the Is22s22ps3s and the Is22s22ps3p configurations in neon. Reference 
g-values are also given. 
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The basis states of other angular momentum coupling schemes are some­
times approximately eigenstates of other atoms or ions. High Z atoms 
are sometimes reasonably well described in the jj coupling scheme. For 
2-electron atoms and ions, basis states in this scheme are often written 
IriIi2JM) , where j1 = '-1 + 8 1, j2 = '-2 + 8 2, J = j1 + j2' The Lk 
coupling scheme is described by basis states 11ILkJM), where L = '-1 + '-2' 
k = L + 8 u and J = k + 8 2 , 

There is one other very important set of possible state vectors for a 2­
electron atom-the independent electron basis states: 

(26) 

Unlike all the previous state vectors, these states are not eigenstates of J 2 , 

and thus cannot represent any particular real energy level. 
These different sets of state vectors should all be recognized as simply dif­

ferent basis states in which a particular level--eigenstate of the Hamiltonian­
can be expressed by a superposition. For some atoms, levels may be nearly 
pure, i.e., consist of a single basis state, in one or another of these basis sets. 
However in general, in any basis, many are required. Knowledge of the Ci 

for a particular level in one basis completely specifies the level, and using 
angular momentum algebra, one can then find the coefficients in a different 
basis. 

For example, in the lower configuration of neon, there is only one J = 0 
level. It must therefore be identical equal to the j k-coupled state eP1/ 2 ) [1/2]0 
(the only J = 0 state in this basis) as well as the LS-coupled 3 Po state (the 
only J = 0 state in this basis). There is also only one J = 2 level, which 
must be pure and equal to both the eP3/ 2 )[3/2]2 basis state or the 3 P2 basis 
state. These levels, being expressable as pure states in LS-coupling, should 
have Lande g-factors. Similarly in the higher configuration, there is only one 
J = 3 level which must be identically equal to the eP3/ 2 )[5/2]3 basis state 
or the 3D 3 state and should have a 3 D3 Lande g-factor. 

The g factors of the other states cannot be determined theoretically with­
out knowing their coefficients in some particular basis. Indeed, measured 
g-factors are used as tests of calculations that provide these coefficients. 

While not exactly correct, we may try assuming the states listed in Ta­
ble 1 are pure j k-coupled states with the quantum numbers as given. Then 
the coefficients Ci in the LS basis can be obtained from standard angular mo­
mentum algebra. Knowing these, the g-factor can be obtained from Eqn. 24. 



Zeeman Effect in Neon 9 

The most easily understood technique is to express all LS-states and j k­
states in a configuration having the same M (but possibly different J's) as a 
superposition of the independent particle states (Eqn. 26) of the p-hole and 
excited electron. 

To understand the needed expressions requires the basic formula for ad­
dition of angular momenta that expresses the state Ijamja) of angular mo­
mentum ja = jl +h and projection mja as a superposition of all possible 
projection states Imjl) and Imj2) of angular momentum jl and h 

(27) 

where the terms in angle bracketts (jl mjlj2mhljamja) are the well known 
Clebsch-Gordon coefficients, and the sum is over mjl and mj2' (See, for 
example, Messiah, Vol. II, Appendix C.) 

Then, for example the I,LSJM) basis state could be obtained as 

I,LSJM) = LJilm£li2m£2ILML) (slmSl s2mS21SMs) (28) 
(LMLSMsIJM) 18m£l mSl m£2mS2) 

where the sum is over all allowed magnetic quantum numbers except M 
which would be specified in advance. Note how the C.-G. coefficients show 
the recoupling of i l and i 2 to produce L, SI and S2 to produce S, and Land 
S to produce J. 

A particular lajkJM) state would be given by: 

lajkJM) = L:(ilm£lslmslljmj)(jmji2m£2Ikmk) (29) 

(kmks2mS2lJM) 18m£l mSl m£2 mS2 ) 

This will not give the transformation coefficients directly but does provide 
a way to obtain them. This is best illustrated by example. Consider the lower 
configuration first. Remember we only expect a mixing of the two J = 1 
states. The technique could be applied to any allowed value of M. M = 2 
and M = -2 can only occur in the J = 2 basis states for which we already 
know the transformation. M = 0 can occur for any value of J (four states, 
in either basis) while M = 1 or M = -1 can occur for the two J = 1 states 
and the J = 2 state in either basis. To keep the number of basis states as 
small as possible, while including the two J = 1 states which are expected 
to mix, the best choice is to work with the M = 1 states. 
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The independent particle states in the lower configuration where £1 = 1, 
81 = 1/2 (the core p-hole) and £2 = 0, 82 = 1/2 (the 38-electron) (written in 
the form of Eqn. 26) that can make M = mil +m Sl +mi2 +m S2 = 1 are: 

la} 181 ~o-~} 

Ib} 181-~0~} (30) 
Ie} 180~0~} 

The LS states that have aM = 1 component are the 3P2 , 3 PI, and 1Pl' 
Taking the 3PI, for example, there would be three non-zero terms in Eqn. 28, 
each of which would include one of the independent electron basis states 
above. 

(31) 

The full transformation could be written in matrix form: 

/1)3 P2 21 21 V2 la}
 
3 PI ) (M = 1) = ~ ~ -j! (Ib}) (32)
 

(( 
1P1 j! -j! 0 Ie} 

Again in the lower configuration, the j k states that have a M = 1 com­
ponent are the eP3 / 2 )[3/2]2, eP3/ 2 ) [3/2]1, and eP1/ 2 ) [1/2]1. Taking the eP3/ 2)[3/2]1, for example, there would be three non-zero terms for its M = 1 
component in Eqn. 29. 

(11!!I~~) (~~001~~) (~~L!I11) 181 !O-!}222222222222 22 
+ (11 L!I~!) (~!OOI~!) (~!!!I11) 181-!O!}2222 22 22 2222 2 2 
+ (10~~1~~) (~~OOI~~) (~~~~I11) 180~O~} 

ff.'a} - [lIb} - fIle} (33)Vi V12 V6 
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The full transformation could be written in matrix form: 

( A If If) (la) )eP3
/ 
2)[3/2]2 ) ( t teP3/ 2 )[3/2]1 (M = 1) = 112 -If Ib) (34)ePI/2)[1/2]1 0 ~ _ ff. IC) 

3 V"3 

Using matrix inversion and multiplication we can get the jk basis states 
as a superposition of the LS basis states: 

(~~~:~~~f~j;~~ )= (~ AA)(:~: ) (35) 
2(PI/2)[1/2]1 0 ~ -A 1PI 

Note that this transformation is actually independent of M even though it 
was derived from M = 1 basis states. Note also the expected result that the eP3 / 2 ) [3/2]2 is a pure 3 P2 state. Having the Ci for the j k states now allows us 
to determine the g-factors in this basis. From Eqn. 21 we have g(3PI) = 3/2 
and gePI) = 1. Thus g(eP3 / 2)[3/2]1 ) = (1/3)(3/2)+(2/3)(1) = 7/6 = 1.167 
and g(ePI/2)[3/2]1) = (2/3)(3/2) + (1/3)(1) = 4/3 = 1.333. 

Before finishing up, let's explore an easier method to obtain the g-factor 
of a level when the level's coefficients are determined in the independent 
electron basis. This is actually quite simple because the perturbation V = 
(BpB/1i)(Lz +2Sz ) is diagonal in this basis. 

(om.elmslm.e2ms2IVlm.elmslm.e2ms2) = BpB[m.el +m.e2 +2(mS1 +mS2 )] (36) 

Thus for the basis states la), Ib), and Ic) we get 

(aIVla) = BPB ·1 (37) 

(bIVlb) = BPB ·1 

(ciVic) = BPB ·2 

From which you should be able to show that, for example, for the 3 PI (M = 1) 
given by Eqn. 31, 

1 1 1)tlE BPB ( -·1 +- .1 +- .2 (38)
442 

3 
"2 BPB , 
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and for the eP3/ 2 )[3/2]1 (M = 1) given by Eqn. 33, 

3 1 1)D..E B/lB ( -·1 + - ·1 + - .2 (39)
4 12 6 

7 
-B/lB6 . 

Comparing with Eqn. 18 gives, as obtained previously, gePI) = 3/2 and 
g(eP3 / 2 )[3/2]1) = 7/6 

Finally, note that the g-factors of the levels labeled ePI / 2 )[1/2]1 and eP3/ 2 ) [3/2]1 in the table are 1.034 and 1.464, respectively: much closer to 
the values expected for the LS-coupled 1 PI and 3 PI states, indicating these 
states are more nearly pure in the LS-basis. It is interesting to note however 
that for the higher- Z inert gases such as Kr and Xe the g-factors do begin 
to come close to the jk-coupled state values of 1.167 and 1.333. 

2 Experiment 

2.1 Setup 

The apparatus is shown in Fig. 1. Make sure you understand the theory of 
the Fabry-Perot interferometer. The optical setup marginally requires that 
the collimating lens has the neon discharge lamp at its focus so that all 
light from a given point on the source goes through the Fabry-Perot FP at a 
single angle. The focussing lens must then have the entrance slit at its focus 
to image the source and FP ring pattern on the entrance slit. (Use the 1 or 
2 mm entrance slit on the brass slit plate.) When this is not done properly, 
the telescope when focussed on the slit image, (which is now dispersed by the 
grating and formed at the exit focus plane) will not show clear interference 
rings. The rings can still be made to come into focus, but at the expense of 
losing the sharp slit images. If the ring pattern does not show the lowest order 
ring near the center of the slit image, it means the FP is not perpendicular 
to the beam and its overall orientation should be adjusted. 

To align the optical flats on the FP, view the source through the FP by 
eye. You should see rings superimposed on the source. If, as you move your 
eye perpendicular to the beam direction and parallel to a line from the center 
of the FP to one of the adjustment screws, the rings move in or out, that 
screw must be adjusted. 
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The magnetic field is adjusted with the dial on the current regulator. It's 
indicator should always remain in the range from 3-7 mAmp, and especially 
should never be allowed to remain at high values. The power supply variac 
dial must be turned up and down together with the current regulator to keep 
the regulator in its working range. The indicator on the power supply gives a 
rough value for the magnet current and should never be allowed to go above 
5 Amps or the magnetic forces may pull the pole pieces together and break 
the yoke in which they are mounted. 

When necessary, the field strength should be measured with a Hall probe. 
The probe face must be oriented parallel to the pole faces and the Hall voltage 
should be measured twice at the same Hall current with the probe turned 
1800 between measurements. The voltage should change sign. The average 
voltage magnitude should be used in calculating the field strength. 

The discharge tends to be more difficult to keep on at high field strengths 
and this problem can depend on the age of the tube so try several tubes and 
turn up the tube voltage if needed to keep the discharge on. Can you see 
any shift in the ring pattern as you do this? Don't leave on the high voltage 
when it is unneccessary as this shortens the tube life. 

2.2 ~easurernents 

You will use the FP in a way different from that suggested in Melissinos. 
A single frequency source produces a single set of rings when the FP is 
interposed. As the frequency increases or decreases the rings move in or out. 
The frequency change needed to move the pattern one ring (so that a ring 
moves to where the ring just inside it or outside it was originally) is called 
the free spectral range lit of the FP (lit = c/21) where c is the speed of light 
and I is the separation between the optical flats (9.995 mm for our FP). 

According to the theory, in a magnetic field, a state of a given J splits into 
2J + 1 components; the change in energy given by Eqn. 18. When you look 
at the spectrum through the telescope, you will see the visible spectrum of 
neon, part of which is diagrammed in Fig. 2. Because the Zeeman splittings 
are small, the wavelength shifts in the magnetic field are much too small to 
resolve with the spectrograph. Nonetheless, within any particular spectral 
line, depending on the J of the initial and final levels, in a magnetic field there 
are several transitions of slightly different energies being observed, which 
change as the B-field is turned up. 
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Mag S 

VT Lamp Pol .......p_ec__...,0 
·;L-·_·~·_·_~fr Lf 

~~ 

Mag I 

PS 
Tel 

CU PO
 

Figure 1: Overview of the experimental setup with the following main com­

ponents: Neon discharge lamp (Lamp) with variable transformer (VT), high
 
field magnet (Mag) with power supply (PS) and control unit (CU), a colli­

mating lens (CL), the FABRY - PEROT interferometer (FP), a focusing lens
 
(FL), a polarizer (Pol), a spectrograph (Spec) with reflection grating (Gr),
 
and a telescope (Tel). Zeeman splittings can be observed at the point of
 
observation (PO).
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Red Red Oro.nge Yellow Lt. Green Bl. Green 

Figure 2: The spectrum (inverted as viewed through a telescope) of neon.
 
Some weaker lines are not shown.
 

---r-M=+l 

J = l-::"'--r---I- M = 0 

....,...-+--+-M = -1 

J=O-···· M=O 

B=O B>O 

Figure 3: Zeeman effect in the case of a J = 0 ---+ J = 1 transition. The 
energy splitting between adjacent sublevels in the J = 1 level is 9jlBB. 
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This is most easily demonstrated for a J = 1 to 0 transitions as in Fig. 3. 
In this case, there is a single frequency when there is no field. Thus when the 
line is viewed with the FP interposed, there should be a single set of rings. 
When the field is then turned on and slowly increased, two components will 
change in frequency at the same rate-one will increase and the other will 
decrease, while a third component does not change frequency. This would be 
observed as two new rings splitting off each of the original rings: one moving 
inward and one moving outward, while the original rings remains stationary. 

As the field is further increased, the rings moving outward will meet the 
rings moving inward halfway between the stationary rings. This is easily 
observed as the two rings meet and the ring pattern becomes twice as dense 
as the original with all rings uniformly spaced. This (double density) pattern 
distinguishes the point at which the frequency shift ~v = ~E/h = gf1-B B/h 
of each component has shifted by Vj /2. Then, a measurement of the B-field 
strength will allow for a determination of the g-factor. 

Continuing to increase the field will cause the rings to move until they 
next meet up with the stationary rings. This will be obvious as the three 
rings merge into a single ring (single density). At this point you know that 
the frequency shift ~ v = 9 f1-B B / h = v j, and a measurement of the B -field 
strength at this point will allow for a determination of the g-factor. 

In fact, any time you can distinguish from a particular pattern that the 
frequency shift, expressed as a fraction of vj, i.e., ~v = nVj, has some 
particular value of n, such as n = 1/2 and n = 1 above, you expect that 

(40) 

The measurements are somewhat better when a polarizer is used to cut 
down the number of frequency components observed through the FP. Re­
call that the dipole selection rules require ~M = 0, ±l. The polarization 
of the light from different values of ~M depends on the direction of light 
propagation relative to the field direction. See Fig. 4. The radiation from 
the ~M = ±1 transitions can be viewed classically as arising from a charge 
(the electron) in a circular orbit rotating in either a clockwise or counter­
clockwise direction with the field direction along the axis of rotation. The 
~M = 0 transitions arise from a charge oscillating back and forth along the 
field direction. 
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o +
 
Figure 4: Classical picture of the electronic motion (top) and emitted radi­
ation (bottom) viewed from two directions relative to the magnetic field: B 
is out of the page (left) and towards the right (right). 

On the left in the figure, the field points out of the page. (Only the ~M = 
1 clockwise electronic rotation is shown. The ~M = 0 oscillation along the 
field direction is head-on and also not shown.) Below this figure, the radiation 
observed coming out of the page is shown. Viewed from this direction only left 
circular and right circular (shown) polarized light is observed. No radiation 
from the ~M = 0 is emitted in this direction, as the oscillations are along 
the observation direction. 

On the right in this figure is the relative orientations used in this experi­
ment. When the same charge oscillations are viewed from a point out of the 
page with the field pointing towards the right, (left view of the figure on the 
left) the ~M = 0 oscillations are now horizontal. The ~M = ±1 rotations, 
in this view, appear as oscillations along a vertical line. Viewed, once again, 
coming out of the page, the radiation (below) from the ~M = 0 transi­
tions is linearly polarized along the field direction and from the ~M = ±1 
transitions it is linearly polarized perpendicular to the field direction. 

If a polarizer is used and oriented to pass the two ~M = ±1 shifting 
frequencies and block the ~M = 0 component, then at a field strength such 
that ~v = vt!2 the inward and outward moving rings meet, but the original 
ring would be absent. Thus there would be just as many rings as there 
are without any field (single density), but each ring would be shifted half a 
position over. Before this occurs, when ~v = vt!4, the rings will have all 
moved in or out 1/4 of a ring spacing, and the pattern will have twice as 
many rings as the B = 0 pattern (double density) and they will be uniformly 
spaced. Both these patterns are easily distinguished. The double density 
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ring pattern repeats at n = D.1I / 11f = 1/4, 3/4, 5/4, etc., and the single 
density pattern at n = D.1I /lIf = 1/2, 1, 3/2, etc. Depending on the g-factor 
you should be able to see shifts of 1/4, 1/2, 3/4, 1, and maybe 5/4 of 1Ij, for 
most of the J = 0 to J = 1 and J = 1 to J = 0 transitions. 

You may want to look at the D.M = 0 transitions (by turning the ori­
entation of the polarizer) of the J = 2 to J = 1 transitions. Think about 
what the rings should do, what ring patterns can be observed to give useful 
information about the frequency shifts, and what information is obtained. 
Hint: well defined patterns occur at D.1I/lIf = 1/3, 2/3, 4/3, etc., (triple 
density patterns), D.1I/lIf = 1/2, 3/2, etc., (double density patterns), and 
D.1I/lIf = 1, 2, 3, etc., (single density patterns). The information obtained 
will be about the difference between the g's of the two levels. 

2.3 Analysis 

For each transition studied, make a table of n = D.1I/1Ij, the Hall probe 
current and voltage (two readings, with the probe oriented in both direc­
tions), and B calculated in Tesla from the Hall probe readings. Make plots 
of n = D.1I / IIf versus B. Put error bars on the B values. Perform a linear 
regression (with zero intercept, as predicted by theory) and obtain the g­
factors (or D.g for a J = 2 to J = 1 transition) from the slope m. From the 
model (Eqn. 40) m = gflB/hllf. 

Make a table including the wavelengths, the two states involved in the 
transition, the slope, and measured g-factors (or D.g) with uncertainties and 
compare them with the previously measured values. 

3 Questions 

1.	 How well can you observe particular patterns? To determine the un­
certainty in B, vary the strength of B within a range over which the 
pattern is not distinguishably changing. Is one particular pattern more 
distinguishable (have a smaller range in B) than another? 

2.	 Derive Eqn. 24 from Eqn. 22. 

3.	 Find the inverse matrix and perform the matrix multiplication to derive 
Eqn.35. 
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4.	 The g-sum rule, derivable from Eqn. 24 and the fact that the Ci are 
elements of a unitary transformation, states that sum of the g-factors 
over a particular J of a configuration should be equal to the sum of 
the g-factors for all possible LS-basis states in that configuration of 
that same J. Check the g-sum rule by computing the sum of reference 
g-values of the two J = 1 transitions in the lower configuration and 
comparing that sum with the sum of the Lande g-faetors for the 1PI 
and 3PI states. Repeat this procedure for both the sum over the J = 1 
and over the J = 2 levels in the higher configuration. Show all work. 

5.	 Show that for a transition between a J = 2 and J = 1 level, with the 
polarizer oriented to pass light polarized along the field direction, the 
frequencies expected to be observed are Vo, and Vo ± (g2 - gI){tBBjh. 
where Vo is the frequency of the line in zero field, and g2 and gi are the 
g-factors of the two levels involved. Draw a figure showing the sublevel 
splittings in both levels, assuming gi =J:. g2, and draw lines between the 
levels showing the transitions that will be observed. 
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