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Overview of these lectures
• Extensive discussion of JLab6 and Jlab12 – Rolf Ent in the 1st week

• Lecture 1: Past and current studies in QCD
• Brief History: The Standard Model & experimental methods (mostly reminders)
• Problems in QCD discovered, but not solved!

• Spin: EMC) spin crisis: inclusive and semi-inclusive DIS and current status
• Nuclei: Another puzzle (EMC effect) and its current status and experimental difficulties
• Polarized Relativistic Heavy Ion Collier: Gluon Spin measurement
• The transverse spin puzzle: neglected clues another lesson to keep in mind

• Lecture 2: The US Electron Ion Collider: Frontiers in investigations of QCD
• Solving the spin puzzle: 3D imaging of the nucleon
• Partons in nuclei: how they organize, and build nuclei, do they saturate?
• Designing an EIC detector and integration in to the Interaction Region (IR)
• EIC: Status and prospects  
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Beginning of experimental particle/nuclear 
physics?
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Probing Matter (1909)
The first exploration of subatomic structure was undertaken 
by Rutherford at Manchester using Au atoms as targets and 
α particles as probes.
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Probing Matter (1909)
The first exploration of subatomic structure was undertaken 
by Rutherford at Manchester using Au atoms as targets and 
α particles as probes.
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Rutherford
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Studying smaller and 
smaller things…
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Studying Matter at Small Scales
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Light Microscope
Wave length: 380-740 nm
Resolution: > 200 nm

Electron Microscope
Wave length: 0.002 nm (100 keV)
Resolution: > 0.2 nm

Fixed Target Particle 
Accelerator Experiments
Wave length: 0.01 fm (20 GeV)
Resolution: ~ 0.1 fm

...

electrons

Electron Accelerator

Target
Detector

SLAC, EMC, NMC, E665, BCDMS, 
HERMES, JLab, COMPASS, …



Probing matter with electrons…
• In the 1960s Experiments at Stanford Linear Accelerator Center (SLAC) established the quark model 

and our modern view of particle physics “the Standard Model”
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Probing Matter with Electrons
The SLAC experiments in the 1960s established the  
quark model and our modern view of particle physics.
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Probing Matter with Electrons
The SLAC experiments in the 1960s established the  
quark model and our modern view of particle physics.
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Target

Detector

Detector

   electron 
beam

Probing Matter with Electrons
The SLAC experiments in the 1960s established the  
quark model and our modern view of particle physics.
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Deep-Inelastic Electron Scattering

Scattered electron is deflected 
by a known B-field and a fixed 
vertical angle:
     determine E’

Spectrometer can rotate in the
horizontal plane,
     vary ✓

~10 GeV



The Static 
Quark 
Model
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The Static (Constituent) Quark Model
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For detailed properties of the 
multiquark systems the model 
failed
How come? What was missing?
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Quantum 
Electrodyna
mics (QED)

V (r) = � q1 q2
4⇥⇤0 r

= ��em

r

Recall: Quantum Electrodynamic
Theory of electromagnetic interactions 

• Exchange particles (photons) do not carry electric charge 

• Flux is not confined: V(r) ~ 1/r,     F(r) ~ 1/r2
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distance

fo
rc
e

1/r2+ -

Example Feynman Diagram: 
 e+e- annihilation

αα
1/q2

Coupling constant (α): Interaction Strength 
                     In QED: αem = 1/137
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Quantum 
Chromodyn

amics 
(QCD)

• Exchange particles (gluons) carry color charge and can self-
interact 

Quantum Chromodynamics (QCD)

!13

Quantum Chromo Dynamics is the “nearly perfect” fundamental 
theory of the strong interactions F. Wilczek, hep-ph/9907340

V (r) = �4

3

�s

r
+ kr

long range ~ r~1/r at short range

q q

Self-interaction: QCD 
significantly harder to 
analyze than QED

Long range aspect ⇒ quark confinement and existence of nucleons

• Flux is confined: 

• Three color charges: red, green and blue
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Gluons!
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Gluons: They Exist!
1979      Discovery of the Gluon 
Mark-J, Tasso, Pluto, Jade experiment at PETRA (e+e– collider) 
at DESY (√s = 13 - 32 GeV)
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jet 2

• e+ e-  → q�q → 2-jets

Physics Letters B, 15 December 1980

Gluons: They Exist!
1979      Discovery of the Gluon 
Mark-J, Tasso, Pluto, Jade experiment at PETRA (e+e– collider) 
at DESY (√s = 13 - 32 GeV)
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• e+ e-  → q�q g → 3-jets
jet 1

jet 2

jet 3
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Physics Letters B, 15 December 1980
Discovery of gluons: Mark-J, Tasso, Pluto, Jade experiments at PETRA (e+e-
collider) at DESY (CM energy 13-32 GeV)



Standard Model (SM) of physics: 
Fundamental building blocks
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H
2012: CERN

• H  BOSON

+

Einstein

gravity

2015: Gravitational waves

18 Nobel 
Prizes since 

1950
+2/3

-1/3

0

-1



Difficulties in understanding our universe
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Not detectable

Unstable

Unstable

Not

Detectable

Absorption length ≈ 10 light years

Hardly interact with matter



Deep Inelastic Scattering (DIS)
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Scattering of protons on protons 
is like colliding Swiss watches to find out 
how they are build. 

              
                      R. Feynman

1. Probing Matter

We can ask : What is in 
there, but not how they are 
built or how they work!



Study of internal 
structure of a 
watermelon:

A-A (RHIC/LHC)
1) Violent 
collision of 
melons

Violent DIS e-A (EIC)

2) Cutting the watermelon with a knife
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Nucleon Spin: Crisis to Puzzle @ IITB

Deep Inelastic Scattering

q = h/λ

h = constant
λ = wavelength 
q = momentum

transferred

Deep Inelastic:   (λ << Proton Size) 

September 15, 2017 18
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Deep Inelastic Scattering: Precision & Control 

Measure of 
resolution 
power

Measure of 
inelasticity

Measure of 
momentum 
fraction of 
struck quark

Kinematics:

Inclusive events: e+p/A à e’+X

Semi-Inclusive events: e+p/A à e’+h(p,K,p,jet)+X

Exclusive events: e+p/A à e’+ p’/A’+ h(p,K,p,jet)

with respect to g
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What does a proton look like in transverse dimension?

Bag Model: Gluon field distribution is wider than the fast moving 
quarks. Color (Gluon) radius > Charge (quark) Radius

Constituent Quark Model: Gluons and sea quarks hide inside 
massive quarks. Color (Gluon) radius ~ Charge (quark) Radius 

Lattice Gauge theory (with slow moving quarks), gluons more 
concentrated inside the quarks: Color (Gluon) radius < Charge 
(quark) Radius

Need transverse images of the quarks and gluons in protons 

Static                 Boosted
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What do gluons in protons look like? 
Unpolarized & polarized parton distribution functions

Need to go beyond 1-dimension! 
Need (2+1)D image of gluons in a nucleon in position & momentum space 
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TABLE IV: Truncated first moments, ∆f1,[0.001→1]
i , and full ones, ∆f1

i , of our polarized PDFs at various Q2.

x-range in Eq. (35) Q2 [GeV2] ∆u +∆ū ∆d +∆d̄ ∆ū ∆d̄ ∆s̄ ∆g ∆Σ
0.001-1.0 1 0.809 -0.417 0.034 -0.089 -0.006 -0.118 0.381

4 0.798 -0.417 0.030 -0.090 -0.006 -0.035 0.369
10 0.793 -0.416 0.028 -0.089 -0.006 0.013 0.366
100 0.785 -0.412 0.026 -0.088 -0.005 0.117 0.363

0.0-1.0 1 0.817 -0.453 0.037 -0.112 -0.055 -0.118 0.255
4 0.814 -0.456 0.036 -0.114 -0.056 -0.096 0.245
10 0.813 -0.458 0.036 -0.115 -0.057 -0.084 0.242
100 0.812 -0.459 0.036 -0.116 -0.058 -0.058 0.238
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FIG. 3: Our polarized PDFs of the proton at Q2 = 10 GeV2

in the MS scheme, along with their ∆χ2 = 1 uncertainty
bands computed with Lagrange multipliers and the improved
Hessian approach, as described in the text.

tendency to turn towards +1 at high x. The latter be-
havior would be expected for the pQCD based models.
We note that it has recently been argued [73] that the
upturn of Rd in such models could set in only at rela-
tively high x, due to the presence of valence Fock states of
the nucleon with nonzero orbital angular momentum that
produce double-logarithmic contributions ∼ ln2(1−x) in
the limit of x → 1 on top of the nominal power behav-
ior. The corresponding expectation is also shown in the
figure. In contrast to this, relativistic constituent quark
models predict Rd to tend to −1/3 as x → 1, perfectly

AπALL
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FIG. 4: Uncertainties of the calculated Aπ0

LL at RHIC in our
global fit, computed using both the Lagrange multiplier and
the Hessian matrix techniques. We also show the correspond-
ing PHENIX data [23].

consistent with the present data.

Light sea quark polarizations: The light sea quark and
anti-quark distributions turn out to be better constrained
now than in previous analyses [36], thanks to the advent
of more precise SIDIS data [10, 14, 15, 16] and of the new
set of fragmentation functions [37] that describes the ob-
servables well in the unpolarized case. Figure 6 shows the
changes in χ2 of the fit as functions of the truncated first
moments ∆ū1,[0.001→1], ∆d̄1,[0.001→1] defined in Eq. (35),
obtained for the Lagrange multiplier method. On the
left-hand-side, Figs. 6 (a), (c), we show the effect on the
total χ2, as well as on the χ2 values for the individual
contributions from DIS, SIDIS, and RHIC pp data and
from the F, D values. It is evident that the SIDIS data
completely dominate the changes in χ2. On the r.h.s. of
the plot, Figs. 6 (b), (d), we further split up ∆χ2 from
SIDIS into contributions associated with the spin asym-
metries in charged pion, kaon, and unidentified hadron
production. One can see that the latter dominate, closely
followed by the pions. The kaons have negligible impact
here. For ∆ū1,[0.001→1], charged hadrons and pions are
very consistent, as far as the location of the minimum
in χ2 is concerned. For ∆d̄1,[0.001→1] there is some slight
tension between them, although it is within the tolerance

QCD 
Terra-incognita!

High Potential 

for Discovery
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QS: Matter of Definition and Frame (II)

7

Infinite Momentum Frame:
•BFKL (linear QCD): splitting functions ⇒ gluon density grows
•BK (non-linear): recombination of gluons ⇒ gluon density tamed

BFKL:BK adds:

αs << 1 αs ∼ 1ΛQCD

know how to 
do physics here ?

m
ax
. d
en
si
ty

QskT

~ 1/kT

kT
 φ
(x
, k

T 2)

•At Qs:   gluon emission balanced by recombination

Unintegrated gluon distribution
depends on kT and x:
the majority of gluons have 
transverse momentum kT ~ QS

(common definition)

HERA



How does a Proton look at  low and very high 
energy?

At high energy:
• Wee partons fluctuations are time dilated in strong interaction time scales
• Long lived gluons radiate further smaller x gluons è which intern radiate more……. Leading to 

a runaway growth?

Low energy: High x
Regime of fixed target exp.
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High energy: Low- x
Regime of a Collider

Cartoon of boosted proton



Gluon and the consequences of its interesting 
properties:

Gluons carry color charge è Can interact with other gluons! 

“…The result is a self catalyzing enhancement that leads to a runaway growth.
A small color charge in isolation builds up a big color thundercloud….”

F. Wilczek, in “Origin of Mass”
Nobel Prize, 2004
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Gluon and the consequences of its interesting 
properties:

Gluons carry color charge è Can interact with other gluons! 

What could limit this indefinite rise? à saturation of 
soft gluon densities via ggàg recombination must be 
responsible.

QS: Matter of Definition and Frame (II)

7

Infinite Momentum Frame:
• BFKL (linear QCD): splitting functions ⇒ gluon density grows
• BK (non-linear): recombination of gluons ⇒ gluon density tamed

BFKL: BK adds:

αs << 1αs ∼ 1 ΛQCD

know how to 
do physics here?

m
ax
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Qs kT

~ 1/kT

k T
 φ

(x
, k

T2 )

• At Qs:   gluon emission balanced by recombination

Unintegrated gluon distribution
depends on kT and x:
the majority of gluons have 
transverse momentum kT ~ QS

(common definition)

recombination 

Apparent “indefinite rise” in gluon distribution in proton!

QS: Matter of Definition and Frame (II)

7

Infinite Momentum Frame:
•BFKL (linear QCD): splitting functions ⇒ gluon density grows
•BK (non-linear): recombination of gluons ⇒ gluon density tamed

BFKL:BK adds:

αs << 1 αs ∼ 1ΛQCD

know how to 
do physics here ?

m
ax
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si
ty

QskT

~ 1/kT

kT
 φ
(x
, k

T 2)

•At Qs:   gluon emission balanced by recombination

Unintegrated gluon distribution
depends on kT and x:
the majority of gluons have 
transverse momentum kT ~ QS

(common definition)

HERA

Where?  No one has unambiguously seen this before!

If true, effective theory of this à“Color Glass Condensate”
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HERA



Without gluons, there would be no nucleons, no atomic nuclei… no visible world! 

• Massless gluons & almost massless quarks, through their interactions, generate most of the mass of the 
nucleons 

• Gluons carry ~50% of the proton’s momentum, a significant fraction of the nucleon’s spin, and are 
essential for the dynamics of confined partons

• Properties of hadrons are emergent phenomena resulting not only from the equation of motion but are 
also inextricably tied to the properties of the QCD vacuum. Striking examples besides confinement are 
spontaneous symmetry breaking and anomalies

• The nucleon-nucleon forces emerge from quark-gluon interactions: how this happens remains a mystery

Experimental insight and guidance crucial for complete understanding of how hadrons & nuclei emerge 

from quarks and gluons

Emergent Dynamics in QCD
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A new facility is needed to investigate, with precision, the dynamics of gluons & sea quarks and 
their role in the structure of visible matter

How are the sea quarks and gluons, and their spins, distributed in space and 
momentum inside the nucleon? 
How do the nucleon properties emerge from them and their interactions?

How do color-charged quarks and gluons, and colorless jets, interact with a nuclear 
medium?
How do the confined hadronic states emerge from these quarks and gluons? 
How do the quark-gluon interactions create nuclear binding?QS: Matter of Definition and Frame (II)

7

Infinite Momentum Frame:
• BFKL (linear QCD): splitting functions ⇒ gluon density grows
• BK (non-linear): recombination of gluons ⇒ gluon density tamed

BFKL: BK adds:

αs << 1αs ∼ 1 ΛQCD

know how to 
do physics here?

m
ax

. d
en

si
ty

Qs kT

~ 1/kT

k T
 φ

(x
, k

T2 )

• At Qs:   gluon emission balanced by recombination

Unintegrated gluon distribution
depends on kT and x:
the majority of gluons have 
transverse momentum kT ~ QS

(common definition)

QS: Matter of Definition and Frame (II)
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Infinite Momentum Frame:
• BFKL (linear QCD): splitting functions ⇒ gluon density grows
• BK (non-linear): recombination of gluons ⇒ gluon density tamed

BFKL: BK adds:

αs << 1αs ∼ 1 ΛQCD

know how to 
do physics here?

m
ax
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Qs kT

~ 1/kT
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 φ

(x
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T2 )

• At Qs:   gluon emission balanced by recombination

Unintegrated gluon distribution
depends on kT and x:
the majority of gluons have 
transverse momentum kT ~ QS

(common definition)

gluon 
emission

gluon 
recombination

?

How does a dense nuclear environment affect the quarks and gluons, 
their correlations, and their interactions?
What happens to the gluon density in nuclei? Does it saturate at high 
energy, giving rise to a gluonic matter with universal properties in all 
nuclei, even the proton?

=
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World’s first

Polarized electron-proton/light ion 

and electron-Nucleus collider

Both designs use DOE’s significant 

investments in infrastructure

For e-A collisions at the EIC:

ü Wide range in nuclei

ü Luminosity per nucleon same as e-p
ü Variable center of mass energy 

The Electron Ion Collider
For e-N collisions at the EIC:

ü Polarized beams: e, p, d/3He
ü e beam 5-10(20) GeV
ü Luminosity Lep ~ 1033-34 cm-2sec-1

100-1000 times HERA
ü 20-100 (140) GeV Variable CoM

1212.1701.v3
A. Accardi et al 
Eur. Phy. J.  A, 52 9(2016)

JLEIC Collaboration
JLEIC Pre-CDR about to be finalized
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eRHIC Design Group
eRHIC pre-CDR

2018



Spin an important tool to 
understand nature….
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Levitating top
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Despite understanding 
gravity, and rotational 
motion individually, when 
combined it produces 
unexpected, unusual and 
interesting results.

In nature, we observe such 
things and try to understand 
the physics behind it.  



1955
Bohr & Pauli
Trying to understand  
The tippy top toy
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1900’s a Century of Spin Surprises!
Experiments that fundamentally changed the way we think about physics!

• Stern Gerlach Experiment (1921)
• Space quantization associated with direction

• Goudsmit and Uhlenbeck (1926)
• Atomic fine structure and electron spin

• Stern (1933)
• Proton’s anomalous magnetic moment : 2.79 (proton not a point particle)

• Kusch (1947)
• Electron’s anomalous magnetic moment: 1.00119 (electron a point particle)

• Yale-SLAC Experiment (Prescott et a.) 
• Electroweak interference in polarizded e-D scattering 

• European Muon Collaboration (EMC) (1988)
• The Nucleon Spin Crisis (now – a puzzle)
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20th Century could be called a “Century of Spin 
Surprises!”

In fact, it has noted by :

Prof. Elliot Leader (University College London) that 
“Experiments with spin have killed more theories in physics, than any other single physical variable”

Prof. James D. Bjorken (SLAC), jokingly,  that
“If theorists had their way, they would ban all experiments involving spin”
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Lets get in to details of e-p 
scattering: what do we learn?
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Lepton Nucleon Cross Section:

• Lepton tensor Lµn affects the kinematics (QED)
• Hadronic tensor Wµn has information about the hadron structure
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Nucleon spin

Lepton spin

Assume only g* exchange



Lepton-nucleon cross section…with spin
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target. Both inclusive and semi-inclusive data were obtained,
and polarized H and D targets will be used in the future.

In this paper, we present SMC results on the spin-
dependent structure functions g1

p and g2
p of the proton, ob-

tained from data taken in 1993 with a polarized butanol tar-
get. First results from these measurements were published in
Refs. ⌦9, 10�. We use here the same data sample, but present
a more refined analysis; in particular, the influence of the
radiative corrections on the statistical error on the asymmetry
is now properly taken into account, resulting in an observ-
able increase of this error at small x , and we allow for a Q2

evolution of the g1
p structure function as predicted by pertur-

bative QCD. SMC has also published results on the deuteron
structure function g1

d ⌦11–13� and on a measurement of
semi-inclusive cross section asymmetries ⌦14�. For a test of
the Bjorken sum rule, we refer to our measurement of g1

d .
The paper is organized as follows. In Sec. II we review

the theoretical background. The experimental setup and the
data-taking procedure are described in Sec. III. In Sec. IV we
discuss the analysis of cross section asymmetries, and in Sec.
V we give the evaluation of the spin-dependent structure
function g1

p and its first moment. The results for g2
p are dis-

cussed in Sec. VI. In Sec. VII we combine proton and deu-
teron results to determine the structure function g1

n of the
neutron and to test the Bjorken sum rule. In Sec. VIII we
interpret our results in terms of the spin structure of the pro-
ton. Finally, we present our conclusions in Sec. IX.

II. THEORETICAL OVERVIEW

A. Cross sections for polarized lepton-nucleon scattering

The polarized deep-inelastic lepton-nucleon inclusive
scattering cross section in the one-photon-exchange approxi-
mation can be written as the sum of a spin-independent term
⌅̄ and a spin-dependent term �⌅ and involves the lepton
helicity hl⇤�1:

⌅⇤⌅̄⇥ 1
2 hl⇤⌅ . ⇥2.1⇧

For longitudinally polarized leptons the spin Sl is along the
lepton momentum k. The spin-independent cross section for
parity-conserving interactions can be expressed in terms of
two unpolarized structure functions F1 and F2 . These func-
tions depend on the four-momentum transfer squared Q2 and
the scaling variable x⇤Q2/2M↵ , where ↵ is the energy of
the exchanged virtual photon and M is the nucleon mass.
The double-differential cross section can be written as a
function of x and Q2 ⌦15�:

d2⌅̄

dxdQ2 ⇤
4⌃⌥2

Q4x ⇧xy2⌅ 1⇥
2ml

2

Q2 ⇤F1⇥x ,Q2⇧

⌅⌅ 1⇥y⇥
�2y2

4 ⇤F2⇥x ,Q2⇧� , ⇥2.2⇧

where ml is the lepton mass, y⇤↵/E in the laboratory sys-
tem, and

�⇤
2Mx
AQ2 ⇤

AQ2

↵
. ⇥2.3⇧

The spin-dependent part of the cross section can be writ-
ten in terms of two structure functions g1 and g2 which
describe the interaction of lepton and hadron currents. When
the lepton spin and the nucleon spin form an angle �, it can
be expressed as ⌦16�
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where  is the azimuthal angle between the scattering plane
and the spin plane ⇥Fig. 1⇧.

The cross sections �⌅ ⇥ and �⌅' refer to the two configu-
rations where the nucleon spin is ⇥anti⇧parallel or orthogonal
to the lepton spin; �⌅ ⇥ is the difference between the cross
sections for antiparallel and parallel spin orientations and
�⌅'⇤⇥hl�⌅T /cos  the difference between the cross sec-
tions at angles  and  ⌅⌃ . The corresponding differential
cross sections are given by
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For a high beam energy E , � is small since either x is small
or Q2 high. The structure function g1 is therefore best mea-
sured in the ⇥anti⇧parallel configuration where it dominates
the spin-dependent cross section; g2 is best obtained from a
measurement in the orthogonal configuration, combined with
a measurement of g1 . In all formulas used in this article, we
consider only the single-virtual-photon exchange. The inter-
ference effects between virtual Z0 and photon exchange in
deep-inelastic muon scattering have been measured ⌦17� and
found to be small and compatible with the standard model
expectations. They can be neglected in the kinematic range
of current experiments.

B. Cross section asymmetries

The spin-dependent cross section terms, Eqs. ⇥2.5⇧ and
⇥2.6⇧, make only a small contribution to the total deep-
inelastic scattering cross section and furthermore their con-
tribution is, in general, reduced by incomplete beam and tar-
get polarizations. Therefore they can best be determined
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target. Both inclusive and semi-inclusive data were obtained,
and polarized H and D targets will be used in the future.

In this paper, we present SMC results on the spin-
dependent structure functions g1

p and g2
p of the proton, ob-

tained from data taken in 1993 with a polarized butanol tar-
get. First results from these measurements were published in
Refs. ⌦9, 10�. We use here the same data sample, but present
a more refined analysis; in particular, the influence of the
radiative corrections on the statistical error on the asymmetry
is now properly taken into account, resulting in an observ-
able increase of this error at small x , and we allow for a Q2

evolution of the g1
p structure function as predicted by pertur-

bative QCD. SMC has also published results on the deuteron
structure function g1

d ⌦11–13� and on a measurement of
semi-inclusive cross section asymmetries ⌦14�. For a test of
the Bjorken sum rule, we refer to our measurement of g1

d .
The paper is organized as follows. In Sec. II we review

the theoretical background. The experimental setup and the
data-taking procedure are described in Sec. III. In Sec. IV we
discuss the analysis of cross section asymmetries, and in Sec.
V we give the evaluation of the spin-dependent structure
function g1

p and its first moment. The results for g2
p are dis-

cussed in Sec. VI. In Sec. VII we combine proton and deu-
teron results to determine the structure function g1

n of the
neutron and to test the Bjorken sum rule. In Sec. VIII we
interpret our results in terms of the spin structure of the pro-
ton. Finally, we present our conclusions in Sec. IX.

II. THEORETICAL OVERVIEW

A. Cross sections for polarized lepton-nucleon scattering

The polarized deep-inelastic lepton-nucleon inclusive
scattering cross section in the one-photon-exchange approxi-
mation can be written as the sum of a spin-independent term
⌅̄ and a spin-dependent term �⌅ and involves the lepton
helicity hl⇤�1:

⌅⇤⌅̄⇥ 1
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For longitudinally polarized leptons the spin Sl is along the
lepton momentum k. The spin-independent cross section for
parity-conserving interactions can be expressed in terms of
two unpolarized structure functions F1 and F2 . These func-
tions depend on the four-momentum transfer squared Q2 and
the scaling variable x⇤Q2/2M↵ , where ↵ is the energy of
the exchanged virtual photon and M is the nucleon mass.
The double-differential cross section can be written as a
function of x and Q2 ⌦15�:
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The spin-dependent part of the cross section can be writ-
ten in terms of two structure functions g1 and g2 which
describe the interaction of lepton and hadron currents. When
the lepton spin and the nucleon spin form an angle �, it can
be expressed as ⌦16�
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where  is the azimuthal angle between the scattering plane
and the spin plane ⇥Fig. 1⇧.

The cross sections �⌅ ⇥ and �⌅' refer to the two configu-
rations where the nucleon spin is ⇥anti⇧parallel or orthogonal
to the lepton spin; �⌅ ⇥ is the difference between the cross
sections for antiparallel and parallel spin orientations and
�⌅'⇤⇥hl�⌅T /cos  the difference between the cross sec-
tions at angles  and  ⌅⌃ . The corresponding differential
cross sections are given by
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For a high beam energy E , � is small since either x is small
or Q2 high. The structure function g1 is therefore best mea-
sured in the ⇥anti⇧parallel configuration where it dominates
the spin-dependent cross section; g2 is best obtained from a
measurement in the orthogonal configuration, combined with
a measurement of g1 . In all formulas used in this article, we
consider only the single-virtual-photon exchange. The inter-
ference effects between virtual Z0 and photon exchange in
deep-inelastic muon scattering have been measured ⌦17� and
found to be small and compatible with the standard model
expectations. They can be neglected in the kinematic range
of current experiments.

B. Cross section asymmetries

The spin-dependent cross section terms, Eqs. ⇥2.5⇧ and
⇥2.6⇧, make only a small contribution to the total deep-
inelastic scattering cross section and furthermore their con-
tribution is, in general, reduced by incomplete beam and tar-
get polarizations. Therefore they can best be determined
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target. Both inclusive and semi-inclusive data were obtained,
and polarized H and D targets will be used in the future.

In this paper, we present SMC results on the spin-
dependent structure functions g1

p and g2
p of the proton, ob-

tained from data taken in 1993 with a polarized butanol tar-
get. First results from these measurements were published in
Refs. ⌦9, 10�. We use here the same data sample, but present
a more refined analysis; in particular, the influence of the
radiative corrections on the statistical error on the asymmetry
is now properly taken into account, resulting in an observ-
able increase of this error at small x , and we allow for a Q2

evolution of the g1
p structure function as predicted by pertur-

bative QCD. SMC has also published results on the deuteron
structure function g1

d ⌦11–13� and on a measurement of
semi-inclusive cross section asymmetries ⌦14�. For a test of
the Bjorken sum rule, we refer to our measurement of g1

d .
The paper is organized as follows. In Sec. II we review

the theoretical background. The experimental setup and the
data-taking procedure are described in Sec. III. In Sec. IV we
discuss the analysis of cross section asymmetries, and in Sec.
V we give the evaluation of the spin-dependent structure
function g1

p and its first moment. The results for g2
p are dis-

cussed in Sec. VI. In Sec. VII we combine proton and deu-
teron results to determine the structure function g1

n of the
neutron and to test the Bjorken sum rule. In Sec. VIII we
interpret our results in terms of the spin structure of the pro-
ton. Finally, we present our conclusions in Sec. IX.

II. THEORETICAL OVERVIEW

A. Cross sections for polarized lepton-nucleon scattering

The polarized deep-inelastic lepton-nucleon inclusive
scattering cross section in the one-photon-exchange approxi-
mation can be written as the sum of a spin-independent term
⌅̄ and a spin-dependent term �⌅ and involves the lepton
helicity hl⇤�1:
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For longitudinally polarized leptons the spin Sl is along the
lepton momentum k. The spin-independent cross section for
parity-conserving interactions can be expressed in terms of
two unpolarized structure functions F1 and F2 . These func-
tions depend on the four-momentum transfer squared Q2 and
the scaling variable x⇤Q2/2M↵ , where ↵ is the energy of
the exchanged virtual photon and M is the nucleon mass.
The double-differential cross section can be written as a
function of x and Q2 ⌦15�:
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where ml is the lepton mass, y⇤↵/E in the laboratory sys-
tem, and
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The spin-dependent part of the cross section can be writ-
ten in terms of two structure functions g1 and g2 which
describe the interaction of lepton and hadron currents. When
the lepton spin and the nucleon spin form an angle �, it can
be expressed as ⌦16�
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where  is the azimuthal angle between the scattering plane
and the spin plane ⇥Fig. 1⇧.

The cross sections �⌅ ⇥ and �⌅' refer to the two configu-
rations where the nucleon spin is ⇥anti⇧parallel or orthogonal
to the lepton spin; �⌅ ⇥ is the difference between the cross
sections for antiparallel and parallel spin orientations and
�⌅'⇤⇥hl�⌅T /cos  the difference between the cross sec-
tions at angles  and  ⌅⌃ . The corresponding differential
cross sections are given by
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For a high beam energy E , � is small since either x is small
or Q2 high. The structure function g1 is therefore best mea-
sured in the ⇥anti⇧parallel configuration where it dominates
the spin-dependent cross section; g2 is best obtained from a
measurement in the orthogonal configuration, combined with
a measurement of g1 . In all formulas used in this article, we
consider only the single-virtual-photon exchange. The inter-
ference effects between virtual Z0 and photon exchange in
deep-inelastic muon scattering have been measured ⌦17� and
found to be small and compatible with the standard model
expectations. They can be neglected in the kinematic range
of current experiments.

B. Cross section asymmetries

The spin-dependent cross section terms, Eqs. ⇥2.5⇧ and
⇥2.6⇧, make only a small contribution to the total deep-
inelastic scattering cross section and furthermore their con-
tribution is, in general, reduced by incomplete beam and tar-
get polarizations. Therefore they can best be determined
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target. Both inclusive and semi-inclusive data were obtained,
and polarized H and D targets will be used in the future.

In this paper, we present SMC results on the spin-
dependent structure functions g1

p and g2
p of the proton, ob-

tained from data taken in 1993 with a polarized butanol tar-
get. First results from these measurements were published in
Refs. ⌦9, 10�. We use here the same data sample, but present
a more refined analysis; in particular, the influence of the
radiative corrections on the statistical error on the asymmetry
is now properly taken into account, resulting in an observ-
able increase of this error at small x , and we allow for a Q2

evolution of the g1
p structure function as predicted by pertur-

bative QCD. SMC has also published results on the deuteron
structure function g1

d ⌦11–13� and on a measurement of
semi-inclusive cross section asymmetries ⌦14�. For a test of
the Bjorken sum rule, we refer to our measurement of g1

d .
The paper is organized as follows. In Sec. II we review

the theoretical background. The experimental setup and the
data-taking procedure are described in Sec. III. In Sec. IV we
discuss the analysis of cross section asymmetries, and in Sec.
V we give the evaluation of the spin-dependent structure
function g1

p and its first moment. The results for g2
p are dis-

cussed in Sec. VI. In Sec. VII we combine proton and deu-
teron results to determine the structure function g1

n of the
neutron and to test the Bjorken sum rule. In Sec. VIII we
interpret our results in terms of the spin structure of the pro-
ton. Finally, we present our conclusions in Sec. IX.

II. THEORETICAL OVERVIEW

A. Cross sections for polarized lepton-nucleon scattering

The polarized deep-inelastic lepton-nucleon inclusive
scattering cross section in the one-photon-exchange approxi-
mation can be written as the sum of a spin-independent term
⌅̄ and a spin-dependent term �⌅ and involves the lepton
helicity hl⇤�1:
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2 hl⇤⌅ . ⇥2.1⇧

For longitudinally polarized leptons the spin Sl is along the
lepton momentum k. The spin-independent cross section for
parity-conserving interactions can be expressed in terms of
two unpolarized structure functions F1 and F2 . These func-
tions depend on the four-momentum transfer squared Q2 and
the scaling variable x⇤Q2/2M↵ , where ↵ is the energy of
the exchanged virtual photon and M is the nucleon mass.
The double-differential cross section can be written as a
function of x and Q2 ⌦15�:
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where ml is the lepton mass, y⇤↵/E in the laboratory sys-
tem, and
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The spin-dependent part of the cross section can be writ-
ten in terms of two structure functions g1 and g2 which
describe the interaction of lepton and hadron currents. When
the lepton spin and the nucleon spin form an angle �, it can
be expressed as ⌦16�
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where  is the azimuthal angle between the scattering plane
and the spin plane ⇥Fig. 1⇧.

The cross sections �⌅ ⇥ and �⌅' refer to the two configu-
rations where the nucleon spin is ⇥anti⇧parallel or orthogonal
to the lepton spin; �⌅ ⇥ is the difference between the cross
sections for antiparallel and parallel spin orientations and
�⌅'⇤⇥hl�⌅T /cos  the difference between the cross sec-
tions at angles  and  ⌅⌃ . The corresponding differential
cross sections are given by
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For a high beam energy E , � is small since either x is small
or Q2 high. The structure function g1 is therefore best mea-
sured in the ⇥anti⇧parallel configuration where it dominates
the spin-dependent cross section; g2 is best obtained from a
measurement in the orthogonal configuration, combined with
a measurement of g1 . In all formulas used in this article, we
consider only the single-virtual-photon exchange. The inter-
ference effects between virtual Z0 and photon exchange in
deep-inelastic muon scattering have been measured ⌦17� and
found to be small and compatible with the standard model
expectations. They can be neglected in the kinematic range
of current experiments.

B. Cross section asymmetries

The spin-dependent cross section terms, Eqs. ⇥2.5⇧ and
⇥2.6⇧, make only a small contribution to the total deep-
inelastic scattering cross section and furthermore their con-
tribution is, in general, reduced by incomplete beam and tar-
get polarizations. Therefore they can best be determined
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For high energy scattering g is small

target. Both inclusive and semi-inclusive data were obtained,
and polarized H and D targets will be used in the future.

In this paper, we present SMC results on the spin-
dependent structure functions g1

p and g2
p of the proton, ob-

tained from data taken in 1993 with a polarized butanol tar-
get. First results from these measurements were published in
Refs. ⌦9, 10�. We use here the same data sample, but present
a more refined analysis; in particular, the influence of the
radiative corrections on the statistical error on the asymmetry
is now properly taken into account, resulting in an observ-
able increase of this error at small x , and we allow for a Q2

evolution of the g1
p structure function as predicted by pertur-

bative QCD. SMC has also published results on the deuteron
structure function g1

d ⌦11–13� and on a measurement of
semi-inclusive cross section asymmetries ⌦14�. For a test of
the Bjorken sum rule, we refer to our measurement of g1

d .
The paper is organized as follows. In Sec. II we review

the theoretical background. The experimental setup and the
data-taking procedure are described in Sec. III. In Sec. IV we
discuss the analysis of cross section asymmetries, and in Sec.
V we give the evaluation of the spin-dependent structure
function g1

p and its first moment. The results for g2
p are dis-

cussed in Sec. VI. In Sec. VII we combine proton and deu-
teron results to determine the structure function g1

n of the
neutron and to test the Bjorken sum rule. In Sec. VIII we
interpret our results in terms of the spin structure of the pro-
ton. Finally, we present our conclusions in Sec. IX.

II. THEORETICAL OVERVIEW

A. Cross sections for polarized lepton-nucleon scattering

The polarized deep-inelastic lepton-nucleon inclusive
scattering cross section in the one-photon-exchange approxi-
mation can be written as the sum of a spin-independent term
⌅̄ and a spin-dependent term �⌅ and involves the lepton
helicity hl⇤�1:
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For longitudinally polarized leptons the spin Sl is along the
lepton momentum k. The spin-independent cross section for
parity-conserving interactions can be expressed in terms of
two unpolarized structure functions F1 and F2 . These func-
tions depend on the four-momentum transfer squared Q2 and
the scaling variable x⇤Q2/2M↵ , where ↵ is the energy of
the exchanged virtual photon and M is the nucleon mass.
The double-differential cross section can be written as a
function of x and Q2 ⌦15�:
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The spin-dependent part of the cross section can be writ-
ten in terms of two structure functions g1 and g2 which
describe the interaction of lepton and hadron currents. When
the lepton spin and the nucleon spin form an angle �, it can
be expressed as ⌦16�
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where  is the azimuthal angle between the scattering plane
and the spin plane ⇥Fig. 1⇧.

The cross sections �⌅ ⇥ and �⌅' refer to the two configu-
rations where the nucleon spin is ⇥anti⇧parallel or orthogonal
to the lepton spin; �⌅ ⇥ is the difference between the cross
sections for antiparallel and parallel spin orientations and
�⌅'⇤⇥hl�⌅T /cos  the difference between the cross sec-
tions at angles  and  ⌅⌃ . The corresponding differential
cross sections are given by
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For a high beam energy E , � is small since either x is small
or Q2 high. The structure function g1 is therefore best mea-
sured in the ⇥anti⇧parallel configuration where it dominates
the spin-dependent cross section; g2 is best obtained from a
measurement in the orthogonal configuration, combined with
a measurement of g1 . In all formulas used in this article, we
consider only the single-virtual-photon exchange. The inter-
ference effects between virtual Z0 and photon exchange in
deep-inelastic muon scattering have been measured ⌦17� and
found to be small and compatible with the standard model
expectations. They can be neglected in the kinematic range
of current experiments.

B. Cross section asymmetries

The spin-dependent cross section terms, Eqs. ⇥2.5⇧ and
⇥2.6⇧, make only a small contribution to the total deep-
inelastic scattering cross section and furthermore their con-
tribution is, in general, reduced by incomplete beam and tar-
get polarizations. Therefore they can best be determined
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Cross section asymmetries….
• Ds|| = anti-parallel – parallel spin cross sections 
• Dsperp= lepton-nucleon spins orthogonal 
• Instead of measuring cross sections, it is prudent to measure the differences: 

Asymmetries in which many measurement imperfections might cancel:

which are related to virtual photon-proton asymmetries A1,A2:
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from measurements of cross section asymmetries in which
the spin-independent contribution cancels. The relevant
asymmetries are

A ⇤⇥
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2⌃̄ , A'⇥
↵⌃'

2⌃̄ , ⇥2.7⌥

which are related to the virtual photon-proton asymmetries
A1 and A2 by
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In Eqs. ⇥2.8⌥ and ⇥2.9⌥, D is the depolarization factor of the
virtual photon defined below and d , ⌅, and  are the kine-
matic factors:
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The cross sections ⌃1/2 and ⌃3/2 refer to the absorption of a
transversely polarized virtual photon by a polarized proton
for total photon-proton angular momentum component along
the virtual photon axis of 1/2 and 3/2, respectively; ⌃TL is an
interference cross section due to the helicity spin-flip ampli-
tude in forward Compton scattering �18�. The depolarization
factor D depends on y and on the ratio R⇥⌃L /⌃T of longi-
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From Eqs. ⇥2.8⌥ and ⇥2.9⌥, we can express the virtual
photon-proton asymmetry A1 in terms of g1 and A2 and find
the following relation for the longitudinal asymmetry:
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The virtual-photon asymmetries are bounded by positivity
relations ⇥A1⇥⇤1 and ⇥A2⇥⇤AR �19�. When the term propor-
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respectively, where F1 is usually expressed in terms of F2
and R:

F1⇥
1⇤�2

2x⇥1⇤R ⌥
F2 . ⇥2.16⌥

These relations are used in the present analysis for the evalu-
ation of g1 in bins of x and Q2, starting from the asymme-
tries measured in the parallel spin configuration and using
parametrizations of F2(x ,Q2) and R(x ,Q2).

The virtual photon-proton asymmetry A2 is evaluated
from the measured transverse and longitudinal asymmetries
A ⇤ and A' :
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From Eqs. ⇥2.3⌥ and ⇥2.9⌥, A2 has an explicit 1/AQ2 depen-
dence and is therefore expected to be small at high energies.
The structure function g2 is obtained from the measured
asymmetries using Eqs. ⇥2.9⌥ and ⇥2.17⌥.

C. Spin-dependent structure function g1

The significance of the spin-dependent structure function
g1 can be understood from the virtual photon asymmetry A1 .
As shown in Eq. ⇥2.9⌥, A1�g1 /F1 or ⌃1/2�⌃3/2⇧g1 . In or-
der to conserve angular momentum, a virtual photon with
helicity ⇤1 or �1 can only be absorbed by a quark with a
spin projection of � 1

2 or ⇤ 1
2 , respectively, if the quarks have

no orbital angular momentum. Hence, g1 contains informa-
tion on the quark spin orientations with respect to the proton
spin direction.

In the simplest quark-parton model, the quark densities
depend only on the momentum fraction x carried by the
quark, and g1 is given by
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�) are the distribution functions of
quarks ⇥antiquarks⌥ with spin parallel and antiparallel to the
nucleon spin, respectively, ei is the electric charge of the
quarks of flavor i , and n f is the number of quark flavors
involved.

In QCD, quarks interact by gluon exchange, which gives
rise to a weak Q2 dependence of the structure functions. The
treatment of g1 in perturbative QCD follows closely that of
unpolarized parton distributions and structure functions �20�.
At a given scale Q2, g1 is related to the polarized quark and
gluon distributions by coefficient functions Cq and Cg
through �20�
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From Eqs. ⇥2.8⌥ and ⇥2.9⌥, we can express the virtual
photon-proton asymmetry A1 in terms of g1 and A2 and find
the following relation for the longitudinal asymmetry:
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ation of g1 in bins of x and Q2, starting from the asymme-
tries measured in the parallel spin configuration and using
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no orbital angular momentum. Hence, g1 contains informa-
tion on the quark spin orientations with respect to the proton
spin direction.
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nucleon spin, respectively, ei is the electric charge of the
quarks of flavor i , and n f is the number of quark flavors
involved.

In QCD, quarks interact by gluon exchange, which gives
rise to a weak Q2 dependence of the structure functions. The
treatment of g1 in perturbative QCD follows closely that of
unpolarized parton distributions and structure functions �20�.
At a given scale Q2, g1 is related to the polarized quark and
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for total photon-proton angular momentum component along
the virtual photon axis of 1/2 and 3/2, respectively; ⌃TL is an
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factor D depends on y and on the ratio R⇥⌃L /⌃T of longi-
tudinal and transverse photoabsorption cross sections:

D⇥
y⇥2�y ⌥⇥1⇤�2y /2⌥

y2⇥1⇤�2⌥⇥1�2ml
2/Q2⌥⇤2⇥1�y��2y2/4⌥⇥1⇤R ⌥

.

⇥2.13⌥

From Eqs. ⇥2.8⌥ and ⇥2.9⌥, we can express the virtual
photon-proton asymmetry A1 in terms of g1 and A2 and find
the following relation for the longitudinal asymmetry:
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These relations are used in the present analysis for the evalu-
ation of g1 in bins of x and Q2, starting from the asymme-
tries measured in the parallel spin configuration and using
parametrizations of F2(x ,Q2) and R(x ,Q2).

The virtual photon-proton asymmetry A2 is evaluated
from the measured transverse and longitudinal asymmetries
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From Eqs. ⇥2.3⌥ and ⇥2.9⌥, A2 has an explicit 1/AQ2 depen-
dence and is therefore expected to be small at high energies.
The structure function g2 is obtained from the measured
asymmetries using Eqs. ⇥2.9⌥ and ⇥2.17⌥.

C. Spin-dependent structure function g1

The significance of the spin-dependent structure function
g1 can be understood from the virtual photon asymmetry A1 .
As shown in Eq. ⇥2.9⌥, A1�g1 /F1 or ⌃1/2�⌃3/2⇧g1 . In or-
der to conserve angular momentum, a virtual photon with
helicity ⇤1 or �1 can only be absorbed by a quark with a
spin projection of � 1

2 or ⇤ 1
2 , respectively, if the quarks have

no orbital angular momentum. Hence, g1 contains informa-
tion on the quark spin orientations with respect to the proton
spin direction.

In the simplest quark-parton model, the quark densities
depend only on the momentum fraction x carried by the
quark, and g1 is given by
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nucleon spin, respectively, ei is the electric charge of the
quarks of flavor i , and n f is the number of quark flavors
involved.

In QCD, quarks interact by gluon exchange, which gives
rise to a weak Q2 dependence of the structure functions. The
treatment of g1 in perturbative QCD follows closely that of
unpolarized parton distributions and structure functions �20�.
At a given scale Q2, g1 is related to the polarized quark and
gluon distributions by coefficient functions Cq and Cg
through �20�
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for total photon-proton angular momentum component along
the virtual photon axis of 1/2 and 3/2, respectively; ⌃TL is an
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From Eqs. ⇥2.8⌥ and ⇥2.9⌥, we can express the virtual
photon-proton asymmetry A1 in terms of g1 and A2 and find
the following relation for the longitudinal asymmetry:
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ation of g1 in bins of x and Q2, starting from the asymme-
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From Eqs. ⇥2.3⌥ and ⇥2.9⌥, A2 has an explicit 1/AQ2 depen-
dence and is therefore expected to be small at high energies.
The structure function g2 is obtained from the measured
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quarks of flavor i , and n f is the number of quark flavors
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In QCD, quarks interact by gluon exchange, which gives
rise to a weak Q2 dependence of the structure functions. The
treatment of g1 in perturbative QCD follows closely that of
unpolarized parton distributions and structure functions �20�.
At a given scale Q2, g1 is related to the polarized quark and
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• A|| could be written down in terms of spin structure function g1, and A2 along with kinematic factors:

Where A1 is bounded by 1, and A2 by sqrt(R=sT/sL), when terms related A2 can be neglected, and 
g is small, 
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for total photon-proton angular momentum component along
the virtual photon axis of 1/2 and 3/2, respectively; ⌃TL is an
interference cross section due to the helicity spin-flip ampli-
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From Eqs. ⇥2.8⌥ and ⇥2.9⌥, we can express the virtual
photon-proton asymmetry A1 in terms of g1 and A2 and find
the following relation for the longitudinal asymmetry:
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These relations are used in the present analysis for the evalu-
ation of g1 in bins of x and Q2, starting from the asymme-
tries measured in the parallel spin configuration and using
parametrizations of F2(x ,Q2) and R(x ,Q2).

The virtual photon-proton asymmetry A2 is evaluated
from the measured transverse and longitudinal asymmetries
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From Eqs. ⇥2.3⌥ and ⇥2.9⌥, A2 has an explicit 1/AQ2 depen-
dence and is therefore expected to be small at high energies.
The structure function g2 is obtained from the measured
asymmetries using Eqs. ⇥2.9⌥ and ⇥2.17⌥.

C. Spin-dependent structure function g1

The significance of the spin-dependent structure function
g1 can be understood from the virtual photon asymmetry A1 .
As shown in Eq. ⇥2.9⌥, A1�g1 /F1 or ⌃1/2�⌃3/2⇧g1 . In or-
der to conserve angular momentum, a virtual photon with
helicity ⇤1 or �1 can only be absorbed by a quark with a
spin projection of � 1

2 or ⇤ 1
2 , respectively, if the quarks have

no orbital angular momentum. Hence, g1 contains informa-
tion on the quark spin orientations with respect to the proton
spin direction.

In the simplest quark-parton model, the quark densities
depend only on the momentum fraction x carried by the
quark, and g1 is given by
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�) are the distribution functions of
quarks ⇥antiquarks⌥ with spin parallel and antiparallel to the
nucleon spin, respectively, ei is the electric charge of the
quarks of flavor i , and n f is the number of quark flavors
involved.

In QCD, quarks interact by gluon exchange, which gives
rise to a weak Q2 dependence of the structure functions. The
treatment of g1 in perturbative QCD follows closely that of
unpolarized parton distributions and structure functions �20�.
At a given scale Q2, g1 is related to the polarized quark and
gluon distributions by coefficient functions Cq and Cg
through �20�

56 5333SPIN STRUCTURE OF THE PROTON FROM POLARIZED . . .

from measurements of cross section asymmetries in which
the spin-independent contribution cancels. The relevant
asymmetries are

A ⇤⇥
↵⌃ ⇤

2⌃̄ , A'⇥
↵⌃'

2⌃̄ , ⇥2.7⌥

which are related to the virtual photon-proton asymmetries
A1 and A2 by

A ⇤⇥D⇥A1⇤⌅A2⌥, A'⇥d⇥A2� A1⌥, ⇥2.8⌥

where

A1⇥
⌃1/2�⌃3/2

⌃1/2⇤⌃3/2
⇥

g1��2g2

F1
,

A2⇥
2⌃TL

⌃1/2⇤⌃3/2
⇥�

g1⇤g2

F1
. ⇥2.9⌥
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In QCD, quarks interact by gluon exchange, which gives
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ation of g1 in bins of x and Q2, starting from the asymme-
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From Eqs. ⇥2.3⌥ and ⇥2.9⌥, A2 has an explicit 1/AQ2 depen-
dence and is therefore expected to be small at high energies.
The structure function g2 is obtained from the measured
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spin direction.
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In QCD, quarks interact by gluon exchange, which gives
rise to a weak Q2 dependence of the structure functions. The
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unpolarized parton distributions and structure functions �20�.
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The cross sections ⌃1/2 and ⌃3/2 refer to the absorption of a
transversely polarized virtual photon by a polarized proton
for total photon-proton angular momentum component along
the virtual photon axis of 1/2 and 3/2, respectively; ⌃TL is an
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From Eqs. ⇥2.8⌥ and ⇥2.9⌥, we can express the virtual
photon-proton asymmetry A1 in terms of g1 and A2 and find
the following relation for the longitudinal asymmetry:

A ⇤

D ⇥⇥1⇤�2⌥
g1

F1
⇤⇥⌅��⌥A2 . ⇥2.14⌥

The virtual-photon asymmetries are bounded by positivity
relations ⇥A1⇥⇤1 and ⇥A2⇥⇤AR �19�. When the term propor-
tional to A2 is neglected in Eqs. ⇥2.8⌥ and ⇥2.14⌥, the longi-
tudinal asymmetry is related to A1 and g1 by

A1�
A ⇤

D ,
g1

F1
�

1
1⇤�2

A ⇤

D , ⇥2.15⌥

respectively, where F1 is usually expressed in terms of F2
and R:

F1⇥
1⇤�2

2x⇥1⇤R ⌥
F2 . ⇥2.16⌥

These relations are used in the present analysis for the evalu-
ation of g1 in bins of x and Q2, starting from the asymme-
tries measured in the parallel spin configuration and using
parametrizations of F2(x ,Q2) and R(x ,Q2).

The virtual photon-proton asymmetry A2 is evaluated
from the measured transverse and longitudinal asymmetries
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From Eqs. ⇥2.3⌥ and ⇥2.9⌥, A2 has an explicit 1/AQ2 depen-
dence and is therefore expected to be small at high energies.
The structure function g2 is obtained from the measured
asymmetries using Eqs. ⇥2.9⌥ and ⇥2.17⌥.

C. Spin-dependent structure function g1

The significance of the spin-dependent structure function
g1 can be understood from the virtual photon asymmetry A1 .
As shown in Eq. ⇥2.9⌥, A1�g1 /F1 or ⌃1/2�⌃3/2⇧g1 . In or-
der to conserve angular momentum, a virtual photon with
helicity ⇤1 or �1 can only be absorbed by a quark with a
spin projection of � 1

2 or ⇤ 1
2 , respectively, if the quarks have

no orbital angular momentum. Hence, g1 contains informa-
tion on the quark spin orientations with respect to the proton
spin direction.

In the simplest quark-parton model, the quark densities
depend only on the momentum fraction x carried by the
quark, and g1 is given by
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quarks ⇥antiquarks⌥ with spin parallel and antiparallel to the
nucleon spin, respectively, ei is the electric charge of the
quarks of flavor i , and n f is the number of quark flavors
involved.

In QCD, quarks interact by gluon exchange, which gives
rise to a weak Q2 dependence of the structure functions. The
treatment of g1 in perturbative QCD follows closely that of
unpolarized parton distributions and structure functions �20�.
At a given scale Q2, g1 is related to the polarized quark and
gluon distributions by coefficient functions Cq and Cg
through �20�
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Relation to spin structure function g1

• In QCD quarks interact with each other through gluons, which gives rise to a Q2

dependence of structure functions

• At any given Q2 the spin structure function is related to polarized quark & gluon 
distributions by coefficients Cq and Cg
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rise to a weak Q2 dependence of the structure functions. The
treatment of g1 in perturbative QCD follows closely that of
unpolarized parton distributions and structure functions �20�.
At a given scale Q2, g1 is related to the polarized quark and
gluon distributions by coefficient functions Cq and Cg
through �20�

56 5333SPIN STRUCTURE OF THE PROTON FROM POLARIZED . . .

from measurements of cross section asymmetries in which
the spin-independent contribution cancels. The relevant
asymmetries are

A ⇤⇥
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2⌃̄ , A'⇥
↵⌃'

2⌃̄ , ⇥2.7⌥

which are related to the virtual photon-proton asymmetries
A1 and A2 by

A ⇤⇥D⇥A1⇤⌅A2⌥, A'⇥d⇥A2� A1⌥, ⇥2.8⌥

where
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In Eqs. ⇥2.8⌥ and ⇥2.9⌥, D is the depolarization factor of the
virtual photon defined below and d , ⌅, and  are the kine-
matic factors:
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The cross sections ⌃1/2 and ⌃3/2 refer to the absorption of a
transversely polarized virtual photon by a polarized proton
for total photon-proton angular momentum component along
the virtual photon axis of 1/2 and 3/2, respectively; ⌃TL is an
interference cross section due to the helicity spin-flip ampli-
tude in forward Compton scattering �18�. The depolarization
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From Eqs. ⇥2.8⌥ and ⇥2.9⌥, we can express the virtual
photon-proton asymmetry A1 in terms of g1 and A2 and find
the following relation for the longitudinal asymmetry:
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The virtual-photon asymmetries are bounded by positivity
relations ⇥A1⇥⇤1 and ⇥A2⇥⇤AR �19�. When the term propor-
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respectively, where F1 is usually expressed in terms of F2
and R:
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These relations are used in the present analysis for the evalu-
ation of g1 in bins of x and Q2, starting from the asymme-
tries measured in the parallel spin configuration and using
parametrizations of F2(x ,Q2) and R(x ,Q2).
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From Eqs. ⇥2.3⌥ and ⇥2.9⌥, A2 has an explicit 1/AQ2 depen-
dence and is therefore expected to be small at high energies.
The structure function g2 is obtained from the measured
asymmetries using Eqs. ⇥2.9⌥ and ⇥2.17⌥.

C. Spin-dependent structure function g1

The significance of the spin-dependent structure function
g1 can be understood from the virtual photon asymmetry A1 .
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der to conserve angular momentum, a virtual photon with
helicity ⇤1 or �1 can only be absorbed by a quark with a
spin projection of � 1

2 or ⇤ 1
2 , respectively, if the quarks have

no orbital angular momentum. Hence, g1 contains informa-
tion on the quark spin orientations with respect to the proton
spin direction.

In the simplest quark-parton model, the quark densities
depend only on the momentum fraction x carried by the
quark, and g1 is given by
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�) are the distribution functions of
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nucleon spin, respectively, ei is the electric charge of the
quarks of flavor i , and n f is the number of quark flavors
involved.

In QCD, quarks interact by gluon exchange, which gives
rise to a weak Q2 dependence of the structure functions. The
treatment of g1 in perturbative QCD follows closely that of
unpolarized parton distributions and structure functions �20�.
At a given scale Q2, g1 is related to the polarized quark and
gluon distributions by coefficient functions Cq and Cg
through �20�
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Quark and anti-quark with spin orientation along and
against the proton spin.
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First Moments of SPIN SFs

a3=ga 
a8 a0

Neutron decay (3F-D)/3
Hyperon Decay

DS

0

1



First moment of g1
p(x) : Ellis-Jaffe SR

Assuming SU(3)f & Ds = 0 , Ellis & Jaffe:

Measurements were done at SLAC (E80, E130) Experiments:
Low 8-20 GeV electron beam on fixed target
Did not reach low enough x à xmin ~ 10-2

Found consistency of data and E-J sum rule above 
7/15/2019 NNPSS at U. of Tennessee, Lecture 1 of 2 on Electron Ion Collider, Abhay Deshpande 40

a3 =
gA

gV
= F + D = 1.2601± 0.0025 a8 = 3F �D =) F/D = 0.575± 0.016

�p
1 = 0.170± 0.004



Spin Crisis
Life was easy in the Quark Parton Model until first spin experiments were 
done!
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Experimental Needs in DIS

Polarized target, polarized beam
• Polarized targets: hydrogen (p), deuteron (pn), helium (3He: 2p+n) 
• Polarized beams: electron,muon used in DIS experiments

Determine the kinematics: measure with high accuracy:
• Energy of incoming lepton
• Energy, direction of scattered lepton: energy, direction
• Good identification of scattered lepton

Control of false asymmetries:
• Need excellent understanding and control of false asymmetries (time variation of the detector 

efficiency etc.)
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Nucleon�s Spin: Naïve Quark Parton Model (ignoring relativistic 
effects… now, illustration only, but historically taken seriously)

• Protons and Neutrons are spin 1/2 particles
• Quarks that constitute them are also spin 1/2 particles
• And there are three of them in the

Proton: u u d            Neutron: u d d

S proton = Sum of all quark spins!

?
1/2      = 1/2  + 1/2 + 1/2  

1/2      = 1/2  - 1/2  + 1/2
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How was the Quark Spin measured?
• Deep Inelastic  polarized electron or muon  scattering

µ

µ

Spin 1 g*
Spin 1/2 quarks
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Experimental issues

Possible sources of false asymmetries:
• beam flux
• target size
• detector size
• detector efficiency

beam target
detector
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An Ideal Situation

If all other things are equal, they cancel in the ratio and….
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A Typical Setup
• Experiment setup (EMC, SMC, COMPASS@CERN)

• Target polarization direction reversed every 6-8 hrs
• Typically experiments try to limit false asymmetries to be about 10 times smaller than the physics 

asymmetry of interest
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Asymmetry Measurement

• f = dilution factor proportional to the polarizable nucleons of interest in 
the target �material� used, for example for NH3, f=3/17

• D is the depolarization factor, kinematics, polarization transfer from 
polarized lepton to photon, D ~ y2
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Proton Spin Crisis (1989)!

DS  = (0.12)  +/- (0.17) (EMC, 1989)
DS  = 0.58 expected from E-J sum rule….

If the quarks did not carry the nucleon’s spin, what did? à Gluons?
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How significant is this?

“It could the discovery of 
the century. Depending, 
of course on how far 
below it goes…”



Measurement of unpolarized glue at HERA
• Scaling violations of F2(x,Q2)

• NLO pQCD analyses: fits with 
linear DGLAP* equations

51

�F2(x,Q2)
�lnQ2

/ G(x,Q2)

Gluon
dominates

*Dokshitzer, Gribov, Lipatov, Altarelli, Parisi
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F2 Structure 
Function

Vs.

Q2 mom. 
exchanged
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Experiments

Hall A at Jlab

E155 etc. SLAC

HERMES at DESY

SMC,COMPASS at CERN



proton deuteron

QCD fits- World data on !"
# and !"$

PLB753 (2016) 18

à %& ', )* as input to global QCD fits for 
extraction of ∆,- ' and ∆% '

' and )* coverage not yet sufficient for precise ∆%
Can be improved by constraining from pp data (as DSSV, NNPDF…)

.%&
. ln)*

∝ −Δ% ', )*
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Similar to extraction of PDFs at HERA 
(RECALL)

NLO pQCD analyses: fits with 
linear DGLAP* equations

54

Gluon
dominates

*Dokshitzer, Gribov, Lipatov, Altarelli, Parisi
7/15/2019 NNPSS at U. of Tennessee, Lecture 1 of 2 on Electron Ion Collider, Abhay Deshpande
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F2 vs. g1 structure function measurements

F2

g1

Q2 (GeV2) Q2 (GeV2)

10510 1021 10103

Large amount of polarized data since 1998… but not in NEW kinematic region!
Large uncertainty in gluon polarization (+/-1.5) results from lack of wide Q2 arm
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FIG. 5 World data for g1(x,Q
2) for the proton with Q2 >

1 GeV2 and W > 2.5 GeV. For clarity a constant ci =
0.28(11.6 − i) has been added to the g1 values within a par-
ticular x bin starting with i = 0 for x = 0.006. Error bars
are statistical errors only. (Also shown is the QCD fit of
Leader et al. (2006).)

x−0.22±0.07 (Alekseev et al., 2010d) and is much bigger
than the isoscalar gd1 . This compares to the situation in
the unpolarized structure function F2 where the small-x
region is dominated by isoscalar gluonic exchanges.

A. Spin sum-rules

To test deep inelastic sum-rules it is necessary to have
all data points at the same value of Q2. Next-to-leading
order (NLO) QCD-motivated fits taking into account the
scaling violations associated with perturbative QCD are
used to evolve all the data points to the same Q2. First
moment sum-rules are then evaluated by extrapolating
these fits to x = 0 and to x = 1, or using a Regge-
motivated extrapolation of the data. Next-to-leading or-
der (NLO) QCD-motivated fits discussed in Section V.C
are used to extract from these scaling violations the par-
ton distributions and in particular the gluon polarization.
Polarized deep inelastic scattering experiments are in-

terpreted in terms of a small value for the flavor-singlet
axial-charge. For example, COMPASS found using the

SU(3) value for g(8)A (Alexakhin et al., 2007) and no lead-
ing twist subtraction constant

g(0)A |pDIS,Q2→∞ = 0.33± 0.03(stat.)± 0.05(syst.). (17)

(This deep inelastic quantity misses any contribution to

g(0)A |inv from a possible delta function at x = 0). When

combined with g(8)A = 0.58 ± 0.03, the value of g(0)A |pDIS

in Eq.(17) corresponds to a negative strange-quark po-
larization

∆sQ2→∞ =
1

3
(g(0)A |pDIS,Q2→∞ − g(8)A )

= −0.08± 0.01(stat.)± 0.02(syst.) (18)

– that is, polarized in the opposite direction to the spin
of the proton. With this ∆s, the following values for the
up and down quark polarizations are obtained

∆uQ2→∞ = 0.84± 0.01(stat.)± 0.02(syst.)

∆dQ2→∞ = −0.43± 0.01(stat.)± 0.02(syst.) (19)

The non-zero value of ∆sQ2→∞ in Eq.(18) is known as
the violation of the Ellis-Jaffe sum-rule (Ellis and Jaffe,
1974).

The extracted value of g(0)A |pDIS required to be un-
derstood by theory, and the corresponding polarized

strangeness, depend on the value of g(8)A . If we in-

stead use the value g(8)A = 0.46 ± 0.05 the correspond-

ing experimental value of g(0)A |pDIS would increase to

g(0)A |pDIS = 0.36± 0.03± 0.05 with

∆s ∼ −0.03± 0.03. (20)

We shall discuss the value of∆s in more detail in Sections
V and VI in connection with more direct measurements
from semi-inclusive deep inelastic scattering plus global
fits to spin data, models and recent lattice calculations
with disconnected diagrams (quark sea contributions) in-
cluded.
The Bjorken sum-rule (Bjorken, 1966, 1970) for the

isovector part of g1 follows from current algebra and is
a fundamental prediction of QCD. The first moment of
the isovector part of g1 is determined by the nucleon’s
isovector axial-charge

∫ 1

0
dxgp−n

1 =
1

6
g(3)A

{
1 +

∑

ℓ≥1

cNSℓα
ℓ
s(Q)

}
. (21)

up to a 1% correction from charge symmetry violation
suggested by a recent lattice calculation (Cloet et al.,
2012). It has been confirmed in polarized deep inelas-

tic scattering at the level of 5%. The value of g(3)A ex-
tracted from the most recent COMPASS data is 1.28 ±
0.07(stat.) ± 0.010(syst.) (Alekseev et al., 2010d) and
compares well with the Particle Data Group value 1.270±
0.003 deduced from neutron beta-decays (Beringer et al.,
2012).

The evolution of the Bjorken integral
∫ 1
xmin

dxgp−n
1

as a function of xmin as well as the isosinglet integral∫ 1
xmin

dxgp+n
1 are shown in Fig. 6. The Bjorken sum-rule

14

Aidala et al.1209.2803v2

So we need to measure scaling violation in the same region
HERA made measurements!

We need polarizsed high energy deep inelastic scattering 
experiment!

We need a polarized e-p collider
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Global analysis of Spin SF

• World�s all available g1 data
• Coefficient and splitting functions 

in QCD at NLO
• Evolution equations: DGLAP

• Quark distributions fairly well 
determined, with small uncertainty

• DS = 0.23 +/- 0.04
• Polarized Gluon distribution has 

largest uncertainties
• DG = 1 +/- 1.5

ABFR analysis method by 
SMC PRD 58 112002 (1998)



Consequence:
• Quark  + Anti-Quark contribution to nucleon spin is definitely small: Ellis-Jaffe sum violation 

confirmed

• Is this smallness due to some cancellation between quark+anti-quark polarization

• The gluon’s contribution seemed to be large!

• Most NLO analyses by theoretical and experimental collaboration consistent with HIGH gluon 
contribution

• Direct measurement of gluon spin with other probes warranted. Seeded the RHIC Spin 
program
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�G = 1± 1.5

�⌃ = 0.30± 0.05
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Evolution: Our Understanding of 
Nucleon Spin

?
1980s 1990/2000s

We have come a long way, but do we understand nucleon spin?
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DS = 0.12 +/- 0.17 



RHIC Spin program and the 
Transverse Spin puzzle
Evidence for transverse spin had been observed but ignored for almost 3 
decades…
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Complementary techniques

Photons colorless: forced to 
interact at NLO with gluons

Can’t distinguish between quarks 
and anti-quarks either

Why not use polarized quarks 
and gluons abundantly available 
in protons as probes ? 
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RHIC as a Polarized Proton Collider
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BRAHMS

STAR

PHENIX

AGS

LINAC
BOOSTER

Pol. H- Source

Spin Rotators
(longitudinal polarization)

Siberian Snakes

200 MeV Polarimeter

Internal Polarimeter

pC PolarimetersAbsolute Polarimeter (H jet)

pC Polarimeter
10-25% Helical Partial Siberian Snake

5.9% Helical Partial Siberian Snake

PHOBOS

Spin Rotators
(longitudinal polarization)

Spin flipper

Siberian Snakes

Without Siberian snakes: nsp = Gg = 1.79 E/m ® ~1000 depolarizing resonances
With Siberian snakes (local 180¡ spin rotators): nsp = ½ ® no first order resonances

Two partial Siberian snakes (11¡ and 27¡ spin rotators) in AGS



Siberian Snakes 
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Ø AGS Siberian Snakes: variable twist helical dipoles, 1.5 T (RT) and 
3 T (SC), 2.6 m long

Ø RHIC Siberian Snakes: 4 SC helical dipoles, 4 T, each 2.4 m long 
and full  360° twist

2.6 m 2.6 m

RIKEN

RIKEN

RIKEN RIKEN

DOE

Courtesy of A. Luccio
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Measuring ALL
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(N) Yield 

(R) Relative Luminosity

(P) Polarization 

ü Bunch spin configuration alternates every 106 ns 

ü Data for all bunch spin configurations are collected at the same time

Þ Possibility for false asymmetries are greatly reduced

Exquisite control over false asymmetries 
due to ultra fast rotations of the
target and probe spin.



Recent global analysis: DSSV 

Bernd Surrow!XXII International Workshop on DIS and Related Subjects - DIS2014 !
Warsaw, Poland, May 01, 2014

Results / Status - Gluon polarization program
9

D. deFlorian et al., arXiv:1404.4293

D. deFlorian et al., arXiv:1404.4293

Wide 
spread at 

low x 
(x<0.05) 

of 
alternative 

fits 
consistent 

within 
90% of 

C.L.

DSSV: Original global analysis incl. first RHIC results (Run 5/6) 

DSSV*: New COMPASS inclusive and semi-inclusive results in addition to Run 5/6 RHIC 
updates 

DSSV - NEW FIT: Strong impact on !g(x) with RHIC run 9 results ⇒ Positive for x > 0.05!

Impact on !g from RHIC data  

“…better small-x 
probes are badly 

needed.”
D. deFlorian et al., arXiv:1404.4293

Bernd Surrow!XXII International Workshop on DIS and Related Subjects - DIS2014 !
Warsaw, Poland, May 01, 2014

Results / Status - Gluon polarization program
9

D. deFlorian et al., arXiv:1404.4293

D. deFlorian et al., arXiv:1404.4293

Wide 
spread at 

low x 
(x<0.05) 

of 
alternative 

fits 
consistent 

within 
90% of 

C.L.

DSSV: Original global analysis incl. first RHIC results (Run 5/6) 

DSSV*: New COMPASS inclusive and semi-inclusive results in addition to Run 5/6 RHIC 
updates 

DSSV - NEW FIT: Strong impact on !g(x) with RHIC run 9 results ⇒ Positive for x > 0.05!

Impact on !g from RHIC data  

“…better small-x 
probes are badly 

needed.”
D. deFlorian et al., arXiv:1404.4293

D. deFlorian et al., arXiv:1404.4293

While RHIC made a huge impact on DG
large uncertainties to remain in the low-x unmeasured region! 
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DG = 0.2 +/- 0.02 +/- 0.5



Transverse spin introduction

• Since people starved to measure effects at high pT to interpret them in pQCD frameworks, this was 
“neglected” as it was expected to be small….. However….

• Pion production in single transverse spin collisions showed us something different….
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“Single-spin asymmetry” 

!" L!

R 

•  expect  AN ~                    in simple parton model 
Kane, Pumplin, Repko ‘78 

AN =
NL �NR

NL + NR

Kane, Pumplin and Repko 

PRL 41 1689 (1978)
AN ⇠ mq

pT
· ↵S ⇠ 0.001
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xF = PL/Pmax
L = 2PL/

p
s

Pion asymmetries: at most CM energies!
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ZGS/ANL
√s=4.9 GeV

RHIC
√s=62.4 GeV

FNAL
√s=19.4 GeV

AGS/BNL
√s=6.6 GeV

Suspect soft QCD effects at low scales, but they seem to remain relevant to 
perturbative regimes as well

7/15/2019
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Collins (Heppelmann) effect: Asymmetry in the 
fragmentation hadrons

Example: Xhhpp 21 ++→+↑

Polarization of struck quark which fragments to hadrons.

Nucl Phys B396 (1993) 161,  
Nucl Phys B420 (1994) 565
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What does “Sivers effect” probe?

Hard probe

(Parton, g*)

hep-ph/ 

0703176

Top view, Breit frame

Sivers function

Generalized Parton 

Distribution Functions

Quark Orbital angular 
momentum

PRD59 (1999) 014013

Quarks orbital motion adds/ 

subtracts longitudinal momentum 

for negative/positive .

Blue shift

PRD66 (2002) 114005
Red shift x̂ẑŷ

x̂

Parton Distribution 

Functions rapidly fall in 

longitudinal momentum 

fraction x.

Final State Interaction between 

outgoing quark and target spectator.



Lepton nucleus scattering for 
understanding the nuclear 
structure and dynamics:
Nuclear structure a known unknown….
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PDFs in nuclei are different than in protons!

7/15/2019 NNPSS at U. of Tennessee, Lecture 1 of 2 on Electron Ion Collider, Abhay Deshpande 70

0.6

0.7

0.8

0.9

1

1.1

1.2

0.0001 0.001 0.01 0.1 1

F 2Ca
/ F

2D

x

EIC

EMC      E136

NMC      E665

0.5

Figure 3.25: The ratio of nuclear over nucleon F2 structure function, R2, as a function of
Bjorken x, with data from existing fixed target DIS experiments at Q2

> 1 GeV2, along with
the QCD global fit from EPS09 [174]. Also shown is the expected kinematic coverage of the
inclusive measurements at the EIC. The purple error band is the expected systematic uncertainty
at the EIC assuming a ±2% (a total of 4%) systematic error, while the statistical uncertainty is
expected to be much smaller.

tering could also take place at a perturbative
scale Q > Q0, and its contribution to the in-
clusive DIS cross-section could be systemati-
cally investigated in QCD in terms of correc-
tions to the DGLAP-based QCD formulation
[213, 214]. Although such corrections are
suppressed by the small perturbative probing
size, they can be enhanced by the number of
nucleons at the same impact parameter in a
nucleus and large number of soft gluons in
nucleons. Coherent multiple scattering nat-
urally leads to the observed phenomena of
nuclear shadowing: more suppression when
x decreases, Q decreases, and A increases.
But, none of these dependences could have
been predicted by the very successful lead-
ing power DGLAP-based QCD formulation.

When the gluon density is so large at
small-x and the coherent multi-parton inter-
actions are so strong that their contributions
are equally important as that from single-
parton scattering, measurements of the DIS

cross-section could probe a new QCD phe-
nomenon - the saturation of gluons discussed
in the last section. In this new regime, which
is referred to as a Color Glass Condensate
(CGC) [158, 155], the standard fixed order
perturbative QCD approach to the coherent
multiple scattering would be completely in-
e↵ective. The resummation of all powers of
coherent multi-parton interactions or new ef-
fective field theory approaches are needed.
The RHIC data [193, 194] on the correla-
tion in deuteron-gold collisions indicate that
the saturation phenomena might take place
at x . 0.001 [193, 194]. Therefore, the re-
gion of 0.001 < x < 0.1, at a su�ciently
large probing scale Q, could be the most
interesting place to see the transition of a
large nucleus from a diluted partonic sys-
tem — whose response to the resolution of
the hard probe (the Q

2-dependence) follows
linear DGLAP evolution — to matter com-
posed of condensed and saturated gluons.

92

Since 1980’s we know the ratio of 
F2’s of nuclei to that of Deuteron 
(or proton) are different.

Nuclear medium modifies the 
PDF’s.

Fair understanding of what goes 
on, in the x > 0.01.

However, what happens at low x?

Does this ratio saturate? Or keep 
on going? – Physics would be very 
different depending on what is 
observed.

Data needed at low-x



Lessons learned:
• Proton and neutrons are not as easy to understand in terms of quarks, and gluons, as earlier 

anticipated:
• Proton’s spin is complex: alignment of quarks, gluons and possibly orbital motion 
• Proton mass: interactions amongst quarks and gluons, not discussed too much

• To fully understand proton structure (including the partonic dynamics) one needs to explore over a 
much broader x-Q2 range (not in fixed target but in collider experiment)

• e-p more precise than p-p as it probes with more experimental control and precision

• Low-x behavior of gluons in proton intriguing; Precise measurements of gluons critical.

We need a new polarized collider….
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World’s first

Polarized electron-proton/light ion 

and electron-Nucleus collider

Both designs use DOE’s significant 
investments in infrastructure

For e-A collisions at the EIC:

ü Wide range in nuclei

ü Luminosity per nucleon same as e-p
ü Variable center of mass energy 

The Electron Ion Collider

72

For e-N collisions at the EIC:

ü Polarized beams: e, p, d/3He
ü e beam 5-10(20) GeV
ü Luminosity Lep ~ 1033-34 cm-2sec-1

100-1000 times HERA
ü 20-100 (140) GeV Variable CoM

7/15/2019

Ed. A. Deshpande, Z.-E. Meziani, J.-W. Qiu

1212.1701.v3
A. Accardi et al Eur. Phy. J.  A, 52 9(2016)
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Figure 1: Schematic Layout of eRHIC. Need to change to a figure includes RCS injector.

program aimed at exploring the novel phenomenon of gluon saturation requires that the CM energy range of
an electron-ion collider extends to 90GeV in electron-nucleus collisions and does reach 140 GeV for electron
proton collisions. The design also needs to allow for the detection of forward scattered protons with a transverse
momentum in the range between 0.2 and 1.3GeV/c. This latter requirement limits the maximum proton angular
spread at the collision point in at least one plane.
The outline for the eRHIC (RR) collider is shown in Figure 1.
Polarized electron bunches of 10 nC are generated in a state-of-the-art polarized electron source followed by a
400MeV injector LINAC. Once per second, the bunch is accelerated in a rapid cycling synchrotron in the RHIC
tunnel to a beam energy of up to 18GeV and is then injected into the electron storage ring where it is brought
into collisions with the hadron beam. In order to maintain high spin polarization each of the 330 (1320) electron-
bunches of 18GeV (10GeV) in the storage ring is replaced after 6 (30) minutes of storage. The Figure 2 shows the
peak luminosity versus CM energy for the eRHIC design. Table ?? lists the main parameters of the designs for the
beam energies with the highest peak luminosity. In case of collisions between electrons and ions, electron-nucleon
luminosity of similar levels are achieved as well. The high luminosity is achieved due to ambitious beam-beam
parameters, flat shape of the electron and hadron bunches at the collision point, and large circulating electron
and proton currents distributed over as many as 1320 bunches (in the case of 10GeV electron energy). In order
to separate the electron and hadron beams shortly after collisions to avoid parasitic crossings the beams collide
under a crossing angle of 22mrad and the crossing angle e↵ects are canceled by employing crab crossing using so
called crab cavities. SAVE this statement for body of the report for later: Crab crossing was already used to

increase the luminosity of the electron-positron collider KEKB, and is planned for the high luminosity

upgrade of the proton-proton collider LHC with beam tests planned in the near future .
The main elements of eRHIC which have to be added to the RHIC complex are:

• A low frequency photocathode gun delivering 10 nC polarized electrons at 1Hz

• A 400MeV injector normal conducting S-band linac

• A 5� 18GeV rapid cycling synchrotron (RCS) in the RHIC tunnel

for an initial low cost step, a 5� 10GeV rapid cycling synchrotron would fit in the AGS tunnel.

not here but in main part

• A high intensity, spin-transparent 5� 18GeV electron storage ring in the RHIC tunnel
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