Nuclear Physics in Astrophysics

Jeff Blackmon (LSU)

-	1. Introduction, BBN & charged-particle reactions																
1 H		2. Stellar evolution, heavy elements & neutrons													2 He		
L [®]	Be	3. ;	Ste	losio	ns & neutron stars					8	C	7	Ó	F	10 Ne		
11 Na	12 Mg											13 Al	14 Si	15 P	18 S	CI CI	18 Ar
19	20 Ca	21 SC	22 TI	23 V	24 Cr	28 Mn	²⁶ Fø	27 Co	28 N i	Cu	³⁰ Zn	31 Ga	32 Ge	33 As	84 Se	. 36 Br	38 Kr
Rb	383 Sr	39 Y	40 Zr	41 ND	42 MO	433 TC	44 Ru	45 Rh	46 Pd	47 Ag	43 Cd	49 In	50 Sn	51 Sb	52 Te	\$3 	54 Xe
	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	177	78 Pt	79 Au	80 Hg	81 11	82 Pb	Bi	84 Po	At At	Rn
87 Fr	Ra Ra	88 AC	104 Unq	105 Unp	106 Unh	107 Uns	108 Uno	103 Une	110 Unn								

Ce	Pr	N¢	61 Pm	62 Sm	63 Eu	64 Gd	65 To	66 Dy	⁶⁷ Họ	88 Er	Tm	70 Yb	71 Lu
Th	91 Pa	U	Np	84 Pu	Am	Çm	87 B k	Cf	s: Es	100 Fm	101 Md	102 No	103 Lr

Solar system abundances

Stellar Structure

Stellar convective zone decoupled from core by radiative heat transport

Hydrostatic equilibrium $\frac{dP(r)}{dr} = -\frac{GM_{in}(r)\rho(r)}{r^2}$

Pressure

$$P(r) = P_{gas}(r) + P_{rad}(r)$$

For sun (non-degenerate) $P_{gas}(r) = \frac{k}{\langle m \rangle} \rho(r) T(r)$ $P_{rad}(r) = \frac{1}{3} a T^{4}(r) < P_{gas}(r)$

Large T,P gradient Opacity: photons absorbed and emitted at shorter λ Luminosity/opacity/T relationship $\longrightarrow L \propto M^4$

The sun M= $2x10^{30}$ kg $\rho(0)=150$ g/cm³ T(0)= $1.5x10^7$ K T(surf)=5800 K L= $3.8x10^{26}$ W

5x10⁴ yr for energy produced in sun's core to be reach surface

Solar fusion: The pp-chains

 Uncertainty in reaction rate
 Branching

 pp-1:
 5% ${}^{1}H(p,e^{+}v){}^{2}H$

 5% ${}^{2}H(p,\gamma){}^{3}He$

 7% ${}^{3}He({}^{3}He,2p){}^{4}He$

 84.7%

pp-2: 3% ³He(α,γ)⁷Be 13.8% ⁷Be(e⁻,**v**)⁷Li 13.78% 13% ⁷Li(p,α)⁴He

pp-3: 5-10% ⁷Be(p,γ)⁸B 0.02% ⁸B(β⁺v)2⁴He

Only v most experiments measure

fusion of 4 ¹H \rightarrow 4He + 2e+ + 2ve + 26.7 MeV energy release

³He(³He,2p)⁴He

- 1999 First measurement of a pp reaction σ at the solar Gamow widow
- Somewhat unique situation
 ⇒ 2 protons with E_p > 6 MeV

$I \approx 1 mA$

- Windowless ³He gas target
- Coincident 2p detection
- 2 events/month at lowest energy (*E_{cm}*= 16 keV)
- About 7% uncertainty at solar energies

CNO Cycle ¹⁷F ¹⁸F 2 h 1 m ¹⁵O 16**O** 17**O** 2 m ¹³N ¹⁴N 15N 10 m 12**C** 13**C** CNO og [(s/pX²)/m³ Wkg²] 0 $\boldsymbol{\epsilon} \approx \boldsymbol{T}^{17}$ -2 $\epsilon \approx 7^4$ Sun -4 PP -6

20

25

30

35

15

 $T_6(K)$

18**O**

- Dominant source of energy generation in stars heavier than the sun
- What is CNO contribution to energy production in the sun? Few%?
- CNO abundances in sun uncertain

0

5

10

Stellar photospheric metallicity disagrees with helioseismology

Resonances are important

Why still measure solar neutrinos?

- ⁸B flux ~4% precision
 →Super-K, SNO, Borexino, . . .
- ⁷Be flux ~5% precision
 →Borexino
 - Others →Radiochemical (integral)
- Neutrino flavor oscillation
 →Neutrinos have mass
 - →Mass ≠ Flavor eigenstates

- But weak constraints on photospheric luminosity (pp neutrino flux)
- What is contribution of CNO cycle to solar energy generation?
- Is photospheric composition reflective of solar core?

Synthesis of Carbon → Ca

Compact Accelerator System for Performing Astrophysical Research

Low-Energy High Intensity Protons and Alphas

$(p,\gamma), (\alpha,\gamma)$ and (α,n) reaction studies 150 keV – 1.1 MeV energy range Solid target station Recirculation windowless gas target ³He neutron detection, HPGe gamma

First plasma created February 2017

Proposed upgrade (DIANA)

- Increase beam energies and intensities
- Introduction of pulsed beams
- User facility for Nuclear Astrophysics community and beyond
- Planned construction and implementation time line 2019 2024

1 Brute force & 2 Clever approaches

High beam intensities (luminosities) & Selective experimental techniques

St. George

Solar system abundances

Slow neutron capture (s) process

- s process
 - Produces about half
 of matter that is
 heavier than iron
 - Series of slowneutron captures
 - Pattern of isotopes
 produced is
 generally well
 understood
 - > Most σ 's measured

AGB Stars – Fate for $M < 8 M_{\odot}$

Thermally unstable: mixing, convection, mass loss \rightarrow nebulae

$^{12}C(p,\gamma)^{13}N(\beta\nu)^{13}C(\alpha,n)^{16}O$

Neutrons drive synthesis of heavy elements

radius

(n,γ) reaction rate (MA cross sections)

Example: ¹²⁴Sn(n, γ)¹²⁵Sn σ —

$$Ee^{-E/kT}$$
 for $(kT = 30keV)$

Stardust from AGB stars

Nittler, Earth Planetary Sci Lett (2003)

Some grains have preserved isotopic composition from solar environment

Relative abundances for isotopes of a given element from a single AGB star Tiny grains isolated from meteorites

Unusual grains identified with SIMS

What's new? weak s-process

Abundance pattern suggests two s process components
 Two different neutron exposures needed

Next steps: New neutron capture measurements

0.4

Mass Number

- Uncertainties larger than previously believed
- New measurements in the region are importan

^{67,68}Zn(n,γ) with DANCE

6.482 MeV

 68 Zn + n

- Detector for Advanced Neutron Capture Experiments (DANCE)
 - 4π BaF γ -ray calorimeter (sum all gamma ray energies)
 - Neuton energies by time-of-flight (distance of 20 m)
- ²⁰⁸Pb sample for background from scattered neutrons
- ~15 days of beam on ^{67,68}Zn samples
 - (100 mg with high enrichment)

Synthesis of heavy elements

- s process
- r process
 - Produces about
 half of matter
 heavier than iron
 - High neutron flux
 - Reactions on unstable isotopes
 - Site unknown

r process in the early Galaxy

New observations of unmixed abundances early in the Galactic halo

What's new? r process not in supernovae?

- Ultra Faint Dwarf Galaxies
 - Relics of early galactic formation
 - Most have no r process elements
 - Few with large abaundances
 - r process is rare event

- Heavy elements do not correlate with Fe in metal-poor stars
- Supernova simulations do not produce robust neutron-rich environment
 - Weak r process (lighter masses)?

Slide from Blackmon, SURF, May 2017

What's new? Neutron-star mergers

- Neutron star mergers produce robust r process pattern independent of stellar conditions
 - Sensitive to: masses, $t_{1/2}$, β n branch & fission barriers
- Eject large amounts of r process material, but merger rate?
 - Advanced LIGO should have sensitivity to measure the current merger rate

Slide from Blackmon, SURF, May 2017

GW170817 – Aug. 17, 2017

• First observation of neutron-star merger in gravitational waves

B. P. Abbott *et al.** (LIGO Scientific Collaboration and Virgo Collaboration) (Received 26 September 2017; revised manuscript received 2 October 2017; published 16 October 2017)

On August 17, 2017 at 12:41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×10^4 years. We infer the component masses of the binary to be between 0.86 and 2.26 M_{\odot} , in acroament with masses of leaven parteen stars. Pasticiting the component spins to the range inferred in

 Observation by 3 GW observatories allows good localization

GW170817 = AT2017gfo

 Multiwavelength (optical, infrared, x-ray, ...) obserations of kilonova → GW170817 н

Kasen et al., Nature, Nov. 2017

 "Smoking gun" evidence for robust r process in n star mergers

Hubble Timelapse (NASA STSci)

Pooley *et al.*, Ap. J. Lett, May 2018 Analysis of Chandra observations

