Low Energy Nuclear Experiments

Ben Kay, Argonne National Laboratory

National Nuclear Physics Summer School, 8-19 July 2019

Overview, part 1 (general properties of nuclei, mostly macroscopic)

What can experimentalists determine about a nuclear system in the lab?

- History ... the isotopes, the facilities we use
- What can we measure/is observable?
- Questions to ask about the nucleus
- How much do they weigh?
- What size are they?
- What shape are

Attempt to accessible examples from recent literature, leaning towards the study of exotie where possible

Overview, part 2 (mostly direct reactions, not so exotic)

The connection between direction reactions and nuclear structure

- History
- Reactions, reaction types, direct reactions
- Observables
- Energies, momentum
- Spectroscopic factors, occupancies (in context of 'modern' [but stable-beam] examples)

Attempt to steer clear of reactions for reaction's sake, rather using them as a meaningful tool to gain insights into topical nuclear structure properties

Overview, part 3 (mostly direct reactions, quite exotic, microscopic)

The connection between direction reactions and nuclear structure

- History
- Exotic beams
- Kinematics
- Spectrometers (with a focus on solenoidal spectrometers)
- A few examples from the last few years (2014, 2017, 2017, current) (what drove them, reaction choices, results, commentary)

Part 2: Mostly direct reactions,... not so exotic

To begin at the beginning ...

The Geiger-Marsden experiment

The plum-pudding idea seemed reasonable: this result would fit expectations

[^0][^1]
Elastic scattering \Rightarrow nucleus

The Geiger-Marsden experiment

[^2]"It was almost as incredible as if you fired a 15 -inch shell at a piece of tissue paper and it came back and hit you." - E. Rutherford.

This has all the same ingredients a modern nuclear reaction experiment:

- A beam
- A target
- A chamber
- Reaction products
- A detector
- ...

This has all the same ingredients a modern nuclear reaction experiment:

§ 7. General Considerations.

In comparing the theory outlined in this paper with the experimental results, it has been supposed that the atom consists of a central charge supposed concentrated at a point, and that the large single deflexions of the α and β particles are mainly due to their passage through the strong central field. The effect of the equal and opposite compensating charge supposed distributed uniformly throughout a sphere has heen neolected. Some of the evidence in sumnort of

- A beam
- A target
- A chamber
- Reaction products
- A detector
- ... thus inferring something about the target nucleus

History

Nuclear reactions and structure share an intertwined history between technological / facilities advances, theoretical advances, and insights ... and it still is (hence this school)!

- Rutherford observed the ${ }^{14} \mathrm{~N}+\alpha \rightarrow{ }^{17} \mathrm{O}+p$ reaction (again, using an a source)
- Cockcroft and Walton used "swift" protons to "split" the atom, carrying out the first artificial nuclear reaction with $600-\mathrm{keV}$ protons via the ${ }^{7 \mathrm{Li}(p, a)} \mathbf{2}^{4} \mathrm{He}$ (reaction notation ... soon)

MORE ENERGY was the eagerly sought (to overcome the Coulomb barrier)

- Bigger Cockcroft-Walton generators (2 million volts, and above)

- Ernest Lawrence developed cyclotrons (more energy)
- Van Der Graaff accelerators led to tandem Van de Graaff accelerators (more energy)
- Then all sorts: linac, superconducting linacs, coupled cyclotrons, etc. (more and more energy)

Accelerators for everyone

Tables from a 1974 retrospective by D. A. Bromley charting the growth of electrostatic accelerators (this omits a comparatively long list of cyclotrons [sorry LBNLI also appearing at a similar time)

Location of the HVEC-CN accelerators.

Serial number	Location	Delivery date
C-1	Oak Ridge National Laboratory	$5 / 5 / 51$
C-2	Rice University	$4 / 53$
C-3	Columbia University	$6 / 30 / 55$
C-4	Imperial College of Science \& Technology	$10 / 14 / 55$
C-5	Atomic Weapons Research Est., England	$6 / 27 / 56$
C-6	University of Strasbourg, France	$11 / 1 / 56$
C-7	Pennsylvania State University	$9 / 30 / 57$
C-8	Atomic Energy Establishment, India	$6 / 15 / 58$
C-9	University of Freiburg, Germany	$7 / 15 / 58$
C-10	Atomic Energy Commission, Sweden	$1 / 15 / 65$
C-11	University of Zurich, Switzerland	$8 / 1 / 59$
C-12	University of Frankfurt, Germany	$2 / 7 / 61$
C-13	University of Padua, Italy	$4 / 61$
C-14	Japan Atomic Energy Research Institute	$11 / 25 / 61$
C-15	University of Laval, Quebec	$4 / 62$
C-16	University of Texas, Austin	$3 / 1 / 63$
C-17	Southern Universities Nuclear Inst., S. Afr.	$2 / 1 / 63$
C-18	State University of Iowa	$8 / 20 / 63$
C-19	Ohio State University	$6 / 62$
C-20	University of Alberta, Canada	$4 / 1 / 64$
C-21	Hahn-Meitner Institute, Germany	$10 / 13 / 65$
C-22	University of Virginia	$12 / 26 / 64$
C-23	University of Kentucky	$7 / 1 / 63$
C-24	Lowell Institute of Technology	$7 / 1 / 64$
C-25	Institute of Nuclear Energy Research,	$6 / 3 / 68$
	Taiwan	$6 / 15 / 66$
C-26	University of Arizona	
		Typically $6-6.5 \mathrm{MV}$

Location of the HVEC-EN accelerators.

Serial number	Location	Delivery date
E-1a	University of Montreal	9/58
E-2	University of Wisconsin	6/1/59
E-3a	Florida State University	8/1/59
E-4	California Institute of Technology	1/15/60
E-5	Australian National University	2/15/60
E-6	Eidg. Technische Hochschule, Zurich	9/60
E-7	Max-Planck-Institut für Kernphysik, Germany	5/31/61
E-8a	Niels Bohr Institute, Copenhagen	5/1/61
E-9	University of Liverpool	5/27/61
E-10	Rice Institute	6/30/61
E-11a	Argonne National Laboratory	6/30/61
E-12	Oak Ridge National Laboratory	6/30/61
E-14	University of Pennsylvania	2/1/62
E-15	University of Texas	11/1/62
E-16a	Centre D'Études Nucléaires, Saclay, France	11/2/62
E-17	University of Erlangen	6/10/66
E-18	University of Oxford	7/63
E-19	Département Atomique Militaire, France	7/30/63
E-20	University of Pittsburgh	11/63
E-21	Weizmann Institute of Science, Israel	12/31/62
E-22	University of Pittsburgh	11/63
E-23	Comision Nacional de Energia Nuclear, Mexico	3/15/68
E-24	University of Utrecht, The Netherlands	1967
E-25	University of Western Michigan	3/17/69
E-26	University of Uppsala, Sweden	8/1/68
E-27	Kansas State University	3/1/69
E-28	University of California, Livermore	3/12/71
E-29	University of Aarhus, Denmark	1972
E-30	University of the Witwatersrand, S. Africa	1973

... literally

Location of the HVEC-FN accelerators

Serial number	Location	Delivery date

FN-1 Rutgers, The State University, New Jersey $12 / 63$
FN-2 Rutgers, The State University, New Jersey $12 / 63$
FN-3 10/63
FN-3 Univarity of Washington
FN-4 Stard University
FN-5 University of Washington $11 / 64$

FN-6 Edensity or Washington
dgivod Arsenal
University of Cologne 11/30/65
State University, Stony Brook, New York 12/1/6
McMaster University
Duke University
FN-12 Notre Dame University \quad 6/20/67
FN-13 Purdue University $\quad 9 / 68$
FN-14 Centre d'Études Nucléaires, Saclay, France
stitut de Physique Atomique, Romania
FN-16 Niels Bohr Institute, Copenhagen 10/3/69
FN-17 Florida State University

Location of the HVEC-MP accelerators.

Serial number	Location	Delivery date

M-1	Yale University	$3 / 1 / 65$
M-2	University of Minnesota	$7 / 1 / 65$
M-3	Atomic Energy of Canada, Ltd.	$8 / 30 / 65$
M-4	University of Rochester	$8 / 13 / 66$
M-5	Max-Planck-Institut für Kernphysik,	$7 / 67$
	Heidelberg	
M-6	Brookhaven National Laboratory	$10 / 31 / 69$
M-7	Brookhaven National Laboratory	$10 / 31 / 69$
M-8	University of Munich	$5 / 15 / 70$
M-9	Institute of Physics, Orsay, France	1973
M-10	University of Strasbourg, France	1973
		SOMQ Stil in
		USE, hear about

Later there came a small number of remarkable "one offs" such as the Yale, Daresbury (UK), and Oak Ridge tandems, which were capable of terminal voltages greater than 20 MV (now all extinct).

A concurrent development of magnetic spectrometers with high resolving power.

Aside: reaction basics

The ingredients

- Target (A)
- Projectile (a)
- Beam-like outgoing ion (b)
- Target-like outgoing ion (recoil) (B)

What can be measured

- Count numbers of b and/or B
- Energy of b and/or B
- Type of b and/or B
- Angle of b and/or B
- And also in coincidence with ... anything

N.B. the beam has E, I, size, spread, purity, the target has thickness, purity, etc.

Reaction types

Many, many types ... elastic, compound, and direct

For most reactions it is the (a, b) of $A(a, b) B$ that is used to label the reaction

The probe (a) can be hadrons, electrons, nuclei, pions, photons, ..., etc.
We'll stick mostly to hadrons, and mostly to direct reactions

Reaction types $A(a, b) B$

${ }^{16} \mathrm{O}(e, e)^{16} \mathrm{O}$ - elastic scattering, $Q=0$
${ }^{16} \mathrm{O}(\mathrm{d}, \mathrm{d})^{16} \mathrm{O}$ - elastic scattering, $\mathrm{Q}=0$

${ }^{16} \mathrm{O}\left(d, d^{\prime}\right)^{16} \mathrm{O}^{*}$ - inelastic scattering, $\mathrm{Q} \sim E_{B}$
${ }^{16} \mathrm{O}(d, p)^{17} \mathrm{O}$ - neutron adding (transfer), $\mathrm{Q}+\mathrm{ve}$
${ }^{16} \mathrm{O}\left(d,{ }^{3} \mathrm{He}\right){ }^{15} \mathrm{~N}$ - proton removing (transfer), Q -ve
${ }^{16} \mathrm{O}\left(\mathrm{e}, \mathrm{e}^{\prime} \mathrm{p}\right)^{15} \mathrm{~N}$ - proton knockout, Q -ve
${ }^{9} \mathrm{Be}\left({ }^{16} \mathrm{O},{ }^{15 \mathrm{~N}}\right) \mathrm{X}$ - proton knockout, Q -ve
${ }^{16} \mathrm{O}\left({ }^{3} \mathrm{He}, \mathrm{t}\right)^{16} \mathrm{~F}$ - charge-exchange $(\beta-), \mathrm{Q}$-ve

$$
Q=m_{\mathrm{A}} c^{2}+m_{\mathrm{a}} c^{2}+m_{\mathrm{b}} c^{2}+m_{\mathrm{B}} c^{2}-E_{x}(\mathrm{~b})-E_{x}(\mathbf{B})
$$

Reaction types $A(a, b) B$

${ }^{16} \mathrm{O}(p, d)^{15} \mathrm{O}$ - neutron removing (transfer), Q-ve
${ }^{16} \mathrm{O}\left({ }^{3} \mathrm{He}, \mathrm{a}\right){ }^{15} \mathrm{O}$ - neutron removing (transfer), $\mathrm{Q}+\mathrm{ve}$
${ }^{16} \mathrm{O}\left({ }^{3} \mathrm{He}, \mathrm{d}\right){ }^{17 \mathrm{~F}}-\mathrm{proton}$ adding (transfer), $\mathrm{Q}+\mathrm{ve}$
${ }^{16} \mathrm{O}(d, a)^{14} \mathrm{~N}$ - np-pair removal (pair transfer), $Q+v e$
${ }^{16} \mathrm{O}(\mathrm{a}, \mathrm{d})^{18} \mathrm{~F}-\mathrm{np}$-pair adding (pair transfer), Q-ve ${ }^{16} \mathrm{O}(t, p)^{16} \mathrm{~F}$ - two-neutron (pair transfer), Q +ve

$$
Q=m_{\mathrm{A}} c^{2}+m_{\mathrm{a}} c^{2}+m_{\mathrm{b}} c^{2}+m_{\mathrm{B}} c^{2}-E_{x}(\mathrm{~b})-E_{x}(\mathrm{~B})
$$

Reaction types $A(a, b) B$

e.g., ${ }^{238} \mathrm{U}+{ }^{76} \mathrm{Ge} \rightarrow{ }^{180} \mathrm{~W}+58$ other nucleons of stuff

Reaction types $A(a, b) B$

e.g., ${ }^{238} \mathrm{U}+{ }^{76} \mathrm{Ge} \rightarrow{ }^{180} \mathrm{~W}+58$ other nucleons of stuff

[^3]
2nd poorly-ordered historical preamble

In the early days ('50s), it was recognized that the angular distributions of protons following a deuteron-induced reaction showed characteristic shapes that reflected the angular momentum of the transferred neutron.
(This led to / was coupled with a remarkable amount of activity, both experimentally and theoretically. Tandems, cyclotrons, and magnetic spectrographs, all developed at extraordinary pace.)

Building on earlier works studying resonances (Briet and Wigner, 1936; Wigner 1946) the conceptual framework was there to develop a model that projected the interior wave function of the nucleus onto the surface of the nucleus and connect the surface to the outside (lab).

Thus theoretical developments quickly led to the definition of spectroscopic overlaps, spectroscopic factors (reduced cross sections). Provided an inference of the singleparticle content of nuclear excitations. Dramatically aided by the advent of 'fast' (60s fast) computers.

The data were highly instructive, and arguably formed the skeleton of our understanding of single-particle nuclear structure as we know it today.

A simple yet profound observation

$8-\mathrm{MeV}$ deuterons from the UoL cyclotron

Fig. 1. Theoretical angular distributions for (d, p) and (d, n) reactions for
different angular momentum transfers to the initial nucleus.
(

FIG. 1. ${ }^{16}(d, p) \mathrm{O}^{17}$ angular distributions in the center-of-mass (c.m.) system: $\phi=$ c.m. angle, $\sigma(\phi)=$ c.m. ${ }^{\text {. }}$ differential cross section in arbitrary the $0.88-\mathrm{Mev}$ excited state.
$1 / 2^{+}, l=0$
$0^{16}(0) 0^{17}$

$\cos ^{\circ} \phi$

The distinctive patterns in the angular distribution of outgoing ions informs us about the spins and parities of energy levels in the residual nucleus through the use of the Born approximation.

... at around the same time

- 1949 (Haxel, Jensen, and Suess, and independently Mayer) the nuclear shell model - the surprising dominance of relatively unimpeded independent particle motion.
- These are 'simple' phenomenological models that work surprisingly well (some of our most advanced models today start out here ...)
- They describe an average central potential in which protons and neutrons execute independent single-particle motions

Enter REALITY

- There is a residual interaction - crudely this is the difference between the central potential and reality
- It is due to the fact nucleons do interact with each other ... RESIDUAL INTERACTIONS

e.g. ${ }^{40} \mathrm{Ca}(d, p)^{41} \mathrm{Ca} A(a, b) B$

Single-particle reaction, single-particle structure

Lee, Schiffer, Zeidman, Satchler, Drisko and Bassel, Phys. Rev. 136, B971 (1964) [one of >60 (d,p) studies]

Transfer reactions $\triangle(a, b) B$

A well understood probe of nuclear structure, much of the formalism developed in the late 50s / early 60s. Exploited to great effect.

Single-nucleon ADDING probes the EMPTINESS of the orbital, or the VACANCY
(cross section proportional to how much 'space' available in the orbital)

Single-nucleon REMOVAL probes the FULLNESS of the orbital, or the OCCUPANCY (cross section proportional to how many particles that are in the orbital)

Requires a few careful considerations...

Transfer reactions $\triangle(a, b) B$

What is measured?

Transfer reactions $\triangle(a, b) B$

What is measured?

If we have carried out our experiment appropriately we know the transfer can be considered a one-step process happening dominantly at the nuclear surface, populating single-particle states in the target nucleus...interpretation follows...which is easier if the experiment is done well!

Transfer reaction \rightarrow nuclear structure

$$
\begin{aligned}
& \begin{array}{l}
\text { Spin and isospin factors. For common } \\
\text { reactions on neutron-rich isotopes such } \\
\text { as (} d, p \text {) the isospin term is } 1 \text { * and the } \\
\text { spin term is either } 1 \text { or }(2 j+1)
\end{array} \\
& \text { *See book chapter by J. P. Schiffer } \\
& \text { in "Isospin" edited by D. H. } \\
& \begin{array}{l}
\text { Wilkinson, 1969. It can be quite } \\
\text { nontrivial! A thorough example is } \\
\text { given in Szwec et al. Phys. Rev. C } \\
94,054314 \text { (2016). }
\end{array}
\end{aligned}
$$

Calculations typically assume $S=1$, pure single-particle states ... of course this is not reality

Spectroscopic factor: a measure of the overlap between the final state and the initial state plus/ minus one nucleon

A model, DWBA

- DWBA? distorted-wave Born approximation
- DW? Incoming and outgoing waves are distorted by the Coulomb field (optical-model potential required), not planes waves
- BA? Transfer considered a perturbation to elastic scattering, often accurate enough to calculate transition rate using the BA

A model, DWBA A(a,b)Be.g. A($\alpha, t) B$

A model, DWBA A(a,b)Be.g. A($\alpha, t) B$

A model, DWBA A(a,b)Be.g. A($\alpha, t) B$

A model, DWBA A($a, b) B$ e.g. $A(\alpha, t) B$

Final state

Optical-model potentials

From elastic scattering data, either specific, or global

$$
\left|\frac{d \sigma}{d \Omega}\right|_{\text {Ruthford }}=1.296 \frac{\left(\left(Z_{1} Z_{2}\right) / E_{\text {c.m. }}\right)^{2}}{\sin ^{4}(\theta / 2)}
$$

DMEBA ingUtS (some thoughts, others available) - FOR REFERENCE

Numerous "modern" finite-range codes available. My experience is limited to Ptolemy by M. H. Macfarlane and S. C. Pieper [ANL-76-11 Rev. 1, ANL Report (1978)] and TWOFNR hosted by the University of Surrey. Others include DWUCK5 and FRESCO and so on (ALL AVAILABLE ONLINE, ask me if interested).

The ingredients are:

- Projectile wave functions:
- Argonne v_{18} potential for (d, p) and (p, d) [older, but valid, is the Reid wave function]
- For all other reactions there are new GFMC parameterizations of Brida, Pieper, and Wiringa, including spectroscopic overlaps [Phys. Rev. C 84, 024319 (2011)]
- Target wave functions:
- Potential depth commonly varied to reproduce the relevant binding energy
- $\mathrm{r}_{0}=1.25-8 \mathrm{fm}, \mathrm{a}=0.65 \mathrm{fm}, \mathrm{V}_{\mathrm{so}}=6 \mathrm{MeV}, \mathrm{r}_{\mathrm{so} 0}=1.1 \mathrm{fm}, \mathrm{a}_{\mathrm{so}}=0.65 \mathrm{fm}$
- Radius parameter consistent with the average from ${ }^{16} \mathrm{O}-208 \mathrm{~Pb}$ from the ($\mathrm{e}, \mathrm{e}^{\prime} \mathrm{p}$) work of Kramer, Blok, and Lapikás [Nucl. Phys. A 679, 267 (2001)]
- Optical model potentials:
- Protons, global potential of Koning and Delaroche [Nucl. Phys. A 713, 231 (2003)] with smooth dependence on energy, A, etc.
- Deuterons, global potential of An and Cai [Phys. Rev. C 73, 054605 (2006)]
- A = 3, recent work of Pang et al. (GDP08) [Phys. Rev. C 79, 024615 (2009)]
- For a particles we used a 'static' potential derived from the A = 90 region [Nucl. Phys. A 131, 653 (1969)] (... more later on this)

Doing a direct-reaction experiment

What reactions?
What energy?
What angles?

Angular momentum matching $A(a, b) B$

Proton adding - ${ }^{118} \mathrm{Sn}(\mathrm{a}, \mathrm{t})^{119} \mathrm{Sb}$ versus ${ }^{118} \mathrm{Sn}\left({ }^{3} \mathrm{He}, \mathrm{d}\right){ }^{119} \mathrm{Sb}$

Data from measurement performed at Yale in March 2010. Part of the thesis work of A. J. Mitchell, University of Manchester There are numerous other examples in the literature

Simple, semi-classical approx.

$$
\begin{gathered}
\ell=r \times p \\
\ell \leq q R
\end{gathered}
$$

Incident beam energy ...

When reactions are carried out at energies a few $\mathrm{MeV} / \mathrm{u}$ above the Coulomb barrier, the resultant angular distributions are forward peaked. Note, it is important that both the incoming and outgoing ions
 are a few $\mathrm{MeV} / \mathrm{u}$ above the barrier.

Angular distributions

Peak cross sections = reliable cross sections

Direct-reaction check list

Putting it all together, an experiment can be designed (of course with the caveat that compromises are inevitable, especially with exotic-beam studies ...)

- Energy
- a few MeV/u above the Coulomb
- Angles
- at the first maxima in peaks of the angular
- Reaction choice
- momentum matching
- Spectrometer
- Absolute cross sections
- depends what you want out of your measurement, though always useful. Measure scattering in the Coulomb regime.
- Which model (fixed at DWBA in this talk, but ADWA and so on).
-What consistency checks can be built in to the measurement?
- What systematic uncertainties can be minimized?
- Technique / accelerator / targets / (sometimes no choice) etc

I will come back to this list several times in the examples section.
If the experiment is done appropriately, then the analysis in terms of DWBA will likely be valid.

Compromises

One can not always choose the optimal set up, and compromises are essential for progress. This may be the case with radioactive ion beam experiments where limited beam energy and intensity are be available, or perhaps for classes of reactions or targets (gases, etc).

Great examples of a compromise are the pioneering works below:

Some examples

Introducing single-particle energies
Introducing occupancies (vacancies)

Single-particle energies - a 'classic' example

In many cases, single-particle strength is fragmented over several states. ${ }^{41} \mathrm{Ca}$ is an excellent example of this: just one neutron outside the doubly-magic ${ }^{40} \mathrm{Ca}$ (20 protons, 20 neutrons) ...

> For the (\mathbf{d}, p) reaction ...
> $\left.\frac{d \sigma}{d \Omega}\right|_{\text {measured }}=\left.g S_{j} \frac{d \sigma}{d \Omega}\right|_{\text {model }} \Leftrightarrow \sigma_{\mathrm{exp}}=\overline{(2 j+1) C^{2}} S_{j} \sigma_{\text {DWBA }}$

The centroid of singlle-particle strength--

 weighted by its spectroscopic strength--is a good approximation to the energy of the underlying single-particle orbital. (ESPEs, SPEs in lit., theory)
Single-particle energies - a 'classic' example

In many cases, single-particle strength is fragmented over several states. ${ }^{41} \mathrm{Ca}$ is an excellent example of this: just one neutron outside the doubly-magic ${ }^{40} \mathrm{Ca}$ (20 protons, 20 neutrons) ...

$$
E_{j}^{\prime}=\frac{\sum_{i} E_{j}^{*}(i) S_{j}(i)}{\sum_{i} S_{j}(i)}
$$

The lowest 1/2- and 3/2- states lie at 3613.5 and 1942.7 keV, respectively.

The centroid of single-particle strength, the energy of the $2 p_{1 / 2}$ and $2 p_{3 / 2}$ orbitals, lie at 4491 and 2327 keV . This is significantly different, a fact often
 overlooked.

Another (more modemr/relevant) example

[^4]
Sb isotopes

Transfer to high-j states

Why (α, t)?
Why 40 MeV ?
Why Yale?
Why $200 \mu \mathrm{~g} / \mathrm{cm}^{2}$ targets?
Why 7 targets?
What else?

Target	$7 / 2^{+}$	$11 / 2^{-}$	Ratio		$C^{2} S_{7 / 2}$		$C^{2} S_{11 / 2}$
${ }^{112} \mathrm{Sn}$	14.6	21.4	1.47	0.99	0.84		
${ }^{114} \mathrm{Sn}$	19.6	27.3	1.39	1.10	0.93		
${ }^{116} \mathrm{Sn}$	19.7	30.9	1.57	0.95	0.97		
${ }^{118} \mathrm{Sn}$	20.4	33.5	1.64	0.88	0.99		
${ }^{120} \mathrm{Sn}$	27.9	39.4	1.41	1.13	1.12		
${ }^{122} \mathrm{Sn}$	24.6	35.5	1.45	0.98	1.00		
${ }^{124} \mathrm{Sn}$	24.7	39.2	1.59	1.00	1.12		

J. P. Schiffer et al., Phys. Rev. Lett. 92, 162501 (2004)

Explanation? Tensor force

Important data for Otsuka's demonstration of the ubiquitous role of the tensor force in NS.

Reactions - drive the field forward

Note here that the neutron occupancies are also key ingredient in this story! Often forgotten and here the data is not particularly great - with potential future Exotic Beam studies e.g. ${ }^{100} \mathrm{Sn}(\mathrm{a}, \mathrm{t})$ and ${ }^{138} \mathrm{Sn}(\mathrm{a}, \mathrm{t})$, it is equally important to understand the behavior of the neutrons too.

Some examples

Introducing single-particle energies
Introducing occupancies (vacancies)

Introducing single-particle energies - can clearly see the important of this in guiding our understanding of nuclear structure ... many future nuclear-reaction experiments with exotic beams

Introducing occupancies (vacancies) - use neutrinoless double- β decay as an example

Neutrinoless double beta decay

A hypothetical decay process ... made 'possible' by pairing in nuclei

Neutrinoless double beta decay

A hypothetical decay process ... made 'possible' by pairing in nuclei

Neutrinoless double beta decay

A hypothetical decay process ... made 'possible' by pairing in nuclei

$$
\left[T_{1 / 2}^{0 \nu}\right]^{-1}=(\text { Phase Space Factor }) \times \mid \text { Nuclear Matrix Element }\left.\right|^{2} \times\left|\left\langle m_{\beta \beta}\right\rangle\right|^{2}
$$

REACHING FOR THE HORIZON

Ton-scale Neutrinoless Double Beta Decay ($0 v \beta \beta$) - A Notional Timeline Search for Lepton Number Violation

"The second recommendation specifically targets the development and deployment of a tonscale neutrino- less double beta decay experiment. Demonstration experiments at the scale of 100 kg are currently underway to identify the requirements and candidate technologies for a larger, next-generation experiment, which is needed to be sensitive to postulated new physics. An ongoing NSAC subcommittee is helping to guide the process of the down-select, from several current options to one U.S.-led ton-scale experiment."

NSAC Long Range Plan 2015
measurements use the atomic nucleus as a laboratory, nuclear theory is critical in connecting experimental results to the underlying lepton-number violating interactions and parameters through nuclear matrix elements, which account for the strong interactions of neutrons and protons. Currently, there exists about a factor of two uncertainty in the relevant matrix elements, but by the time a ton-scale experiment is ready to take data, we expect reduced uncertainties as a result of the application to this problem of improved methods to solve the nuclear many-body physics."

Neutrinoless double beta decay

The ${ }^{76} \mathrm{Ge}$ and ${ }^{76} \mathrm{Se}$ isotopes

What is the occupancy and vacancy of the active orbitals? How is the proton/neutron strength distributed (nature of the Fermi surface)? How does it change from parent to daughter?
-- NUCLEON TRANSFER REACTIONS can answer this (let's see how!)

Spectroscopic factors, sum rules

REVIEWS OF MODERN PHYSICS
VOLUME 32, NUMBER 3
JULY, 1960

Stripping Reactions and the Structure of Light and Intermediate Nuclei*

M. H. Macfarlane

Argonne National Laboratory, Lemont, Illinois, and University of Rochester, Rochester, New York \dagger AND
J. B. French

University of Rochester, Rochester, New York
vacancies + occupancies valency of the orbit

$$
\text { Vacancy }_{j}=\sum_{i}(2 j+1) C^{2} S_{j}^{\text {adding }}
$$

$$
\text { Occupancy }_{j}=\sum_{i} C^{2} S_{j}^{\text {removing }}
$$

$$
\begin{gathered}
S^{\prime} \equiv \sigma_{\text {exp }} / \sigma_{\text {DWBA }}, \quad N_{j} \equiv S^{\prime} / S \\
N_{j} \equiv\left[\sum S_{\text {removing }}^{\prime}+\sum(2 j+1) S_{\text {adding }}^{\prime}\right] /(2 j+1)
\end{gathered}
$$

Is the normalization arbitrary? Well, yes and no. If you have measured absolute cross sections, then no (with caveats). Otherwise, yes.

Does the normalization have a physical meaning? Or does it just mask things we don't understand? Let's see what value it appears to take before answering this.

SFs \rightarrow sum rules \rightarrow occupancies

Cross sections to nuclear structure

76 Ge(p,d)	$\mathbf{7 5} \mathbf{G E}$	
\mathbf{E}	$\boldsymbol{\ell}$	\mathbf{s}^{\prime}
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0 . 4 5}$
191	4	
$\mathbf{2 4 8}$	$\mathbf{1}$	$\mathbf{0 . 1 2}$
317	3	
457	3	
$\mathbf{5 7 5}$	$\mathbf{1}$	$\mathbf{1 . 2 9}$
$\mathbf{6 5 1}$	3	
$\mathbf{8 8 5}$	$\mathbf{1}$	$\mathbf{0 . 1 0}$
$\mathbf{1 1 3 7}$	$\mathbf{1}$	$\mathbf{0 . 1 1}$
1250	3	
1410	0	
$\mathbf{1 4 5 1}$	$\mathbf{1}$	$\mathbf{0 . 3 7}$
$\mathbf{1 5 8 0}$	3	

76Ge(d/p)77Ge		
E	ℓ	(2j+1)S
160	1	0.44
225	4	
421	2	
505	2	
629	1	0.15
884	2	
1021	1	0.12
1048	1	0.04
1250	0	
1385	2	
$N_{j} \equiv S^{\prime} / S$		

Checks

- (d, p) and (p, d) done at 7.5 $\mathrm{MeV} / \mathrm{u}$ and $11.5 \mathrm{MeV} / \mathrm{u}$
- $\left(\mathrm{a},{ }^{3} \mathrm{He}\right)$ and $\left({ }^{3} \mathrm{He}, \mathrm{a}\right)$ for the $\ell=3,4$, at $10 \mathrm{MeV} / \mathrm{u}$ and 8.7 MeV/u
- 4 targets used (consistency)
- Absolute cross sections (Rutherford scattering measured)
- Yale Enge split-pole spectrograph (now at FSU)
- Stats (10s nA beams, <1\%)
- Targets around $200 \mu \mathrm{gcm}{ }^{2}$

SFs \rightarrow sum rules \rightarrow occupancies

Cross sections to nuclear structure

${ }^{76} \mathrm{Ge}(p, d) 75 \mathrm{Ce}$			
E	ℓ	\mathbf{S}^{\prime}	S
0	1	0.45	0.85
191	4		
248	1	0.12	0.23
317	3		
457	3		
575	1	1.29	2.43
651	3		
885	1	0.10	0.19
1137	1	0.11	0.21
1250	3		
1410	0		
1451	1	0.37	0.70
1580	3		

$N_{j} \equiv[(0.45+0.12+1.29+0.10+0.11+0.37)$

$$
(0.44+0.15+0.12+0.04)] /(2+4)=\underline{\underline{0.53}}
$$

Checks

- (d, p) and (p, d) done at 7.5 MeV/u and $11.5 \mathrm{MeV} / \mathrm{u}$
- $\left(a,{ }^{3} \mathrm{He}\right)$ and $\left({ }^{3} \mathrm{He}, a\right)$ for the $\ell=3,4$, at $10 \mathrm{MeV} / \mathrm{u}$ and 8.7 MeV/u
- 4 targets used
- Absolute cross sections (Rutherford scattering measured)
- Yale Enge split-pole spectrograph (now at FSU)
- Stats (10s nA beams, <1\%)
- Targets around $200 \mu \mathrm{gcm}{ }^{2}$

Quantitative description of the change

Isotope	$0 f_{5 / 2}$	$1 p_{1 / 2,3 / 2}$	$0 g_{9 / 2}$	Sum	Expect
${ }^{74} \mathrm{Ge}$	1.8	1.1	4.3	7.2	8
${ }^{76} \mathrm{Ge}$	1.4	1.1	3.5	$\mathbf{6 . 0}$	$\mathbf{6}$
${ }^{76} \mathrm{Se}$	2.2	1.6	4.2	$\mathbf{8 . 0}$	$\mathbf{8}$
${ }^{78} \mathrm{Se}$	2.3	0.9	2.8	6.1	6
Isotope	$0 f_{5 / 2}$	$1 p_{1 / 2,3 / 2}$	$09_{9 / 2}$	Sum	Expect
${ }^{74} \mathrm{Ge}$	1.89	1.52	0.37	3.78	4
${ }^{76} \mathrm{Ge}$	1.75	2.04	0.23	$\mathbf{4 . 0 2}$	$\mathbf{4}$
${ }^{76} \mathrm{Se}$	2.09	3.17	0.86	$\mathbf{6 . 1 2}$	$\mathbf{6}$
${ }^{78} \mathrm{Se}$	2.35	1.82	2.05	6.22	6

Normalization factors, average across 4 targets, were $0.53(1), 0.56(7)$, and $0.57(4)$, for the $1 p$, $0 f$, and 0 g orbitals, respectively. The (d, p)+ (p, d) reactions used for the $1 p$ and the ($a,{ }^{3} \mathrm{He}$) $+\left({ }^{3} \mathrm{He}, a\right)$ used for the $0 f$ and $0 g$ states.
0.1 to 0.3 nucleon uncertainties in the vacancies.

$0 g_{9 / 2}$
$1 p$
$0 f_{5 / 2}$

Quantitative description of the change

This rearrangement must occur in the decay process - NUCLEAR REACTIONS TELL US SO

For neutrons, significant changes in the vacancy of all 'active' orbitals-seemingly described quite well. For protons it is

 similar.

Here is a quick comparison of theory and experiment in the differences ... before (A) and after (B and C)

[^5]

Quantitative description of the change

This rearrangement must occur in the decay process - NUCLEAR REACTIONS TELL US SO

For neutrons, significant changes in the vacancy of all 'active' orbitals-seemingly described quite well. For protons it is similar.

Here is a quick comparison of theory and experiment in the differences ... before (A) and after (B and C)

[^6]

Aside: Useful papers

(for a pedagogical discussion of the reduction of the cross-section data)

Test of Sum Rules in Nucleon Transfer Reactions
J. P. Schiffer, ${ }^{1, *}$ C. R. Hoffman, ${ }^{1}$ B. P. Kay, ${ }^{1, \dagger}$ J. A. Clark, ${ }^{1}$ C. M. Deibel, ${ }^{1,2, \ddagger}$ S. J. Freeman, ${ }^{3}$ A. M. Howard, ${ }^{3, \S}$ A. J. Mitchell, ${ }^{3}$ P. D. Parker, ${ }^{4}$ D. K. Sharp, ${ }^{3}$ and J. S. Thomas ${ }^{3}$

PHYSICAL REVIEW C 87, 034306 (2013)

Valence nucleon populations in the $\mathbf{N i}$ isotopes
J. P. Schiffer, ${ }^{1, *}$ C. R. Hoffman, ${ }^{1}$ B. P. Kay,,${ }^{1, \dagger}$ J. A. Clark, ${ }^{1}$ C. M. Deibel,,${ }^{1,2, \ddagger}$ S. J. Freeman, ${ }^{3}$ M. Honma, ${ }^{4}$ A. M. Howard, ${ }^{3, \delta}$ A. J. Mitchell, ${ }^{3, \|}$ T. Otsuka, ${ }^{5}$ P. D. Parker, ${ }^{6}$ D. K. Sharp, ${ }^{3}$ and J. S. Thomas ${ }^{3}$

See Calem Hoffman's EBSS2014 talk at http://fribusers.org/ 4_GATHERINGS/2 SCHOOLS/2014/PRESENTATIONS/ hoffman_2.pdf for an in-depth discussion on this work.

So what is that normalization all about?

$N_{j} \equiv[(0.45+0.12+1.29+0.10+0.11+0.37)+(0.44+0.15+0.12+0.04)] /(2+4)=\underline{0.53}$ \qquad
The normalization appears meaningful, a ubiquitous feature of low-lying single-particle strength, independent of A, ℓ, nucleon type, reaction, etc.

Reaction, ℓ transfer	Number of determinations	F_{q}	rms spread
$\left(e, e^{\prime} p\right)$, all ℓ	16	0.55	0.07
$(d, p),(p, d), \ell=0-2$	40	0.53	0.09
$(d, p),(p, d), \ell=0-3$	46	0.53	0.10
$\left.\left(\alpha,{ }^{3} \mathrm{He}\right),{ }^{3} \mathrm{He}, \alpha\right), \ell=4-7$	26	0.50	0.09
$\left.\left(\alpha,{ }^{3} \mathrm{He}\right),{ }^{3} \mathrm{He}, \alpha\right), \ell=3-7$	34	0.52	0.09
$\left({ }^{3} \mathrm{He}, d\right), \ell=0-2$	18	0.54	0.10
$\left({ }^{3} \mathrm{He}, d\right), \ell=0-4$	26	0.54	0.09
$(\alpha, t), \ell=4-5$	14	0.64	0.04
$(\alpha, t), \ell=3-5$	18	0.64	0.04
All transfer data ${ }^{\text {a }}$	124	0.55	0.10

[^7]

So what is that normalization all about?

"Thus at any time only $2 / 3$ of the nucleons in the nucleus act as independent particles moving in the nuclear mean field. The remaining third of the nucleons are correlated."*

Key points:

- Can be academic as many studies involve only relative quantities
- Arguably essential in terms of understanding and a 'hot topic' these days in the Exotic Beam era ...

... how well understood?

There are a handful of isotopes where reliable experimentally determined cross sections exist from numerous 'equivalent' probes, e.g., proton removal from ${ }^{12} \mathrm{C}$. Same physics results

Exotic beam reactions bring new puzzles

About 10 years ago it was observed that 'reduction factors' determined from a large body nucleon-knockout cross sections tended to unity for more weakly bound systems and fell as low as ~ 0.2 for the more strongly bound systems.

ΔS approximates the difference between the proton and neutron Fermi surfaces
$\Delta S=S_{p}-S_{n}$ for proton reactions
$\Delta S=S_{p}-S_{n}$ for proton reactions

Much work to do ...

Exotic beam reactions bring new puzzles

About 10 years ago it was observed that 'reduction factors' determined from a large body nucleon-knockout cross sections tended to unity for more weakly bound systems and fell as low as ~ 0.2 for the more strongly bound systems.

Series of experiments

Single-nucleon and two-nucleon transfer on nuclei involved in the ${ }^{76} \mathrm{Ge} \rightarrow{ }^{76} \mathrm{Se}$, ${ }^{100} \mathrm{Mo} \rightarrow{ }^{100} \mathrm{Ru},{ }^{130} \mathrm{Te} \rightarrow{ }^{130} \mathrm{Xe}$, and ${ }^{136} \mathrm{Xe} \rightarrow{ }^{136} \mathrm{Ba}$ decays

Original works, including cross sections and analyzed data:

```
S. J. Freeman et al., Phys. Rev. C 75, 051301(R) (2007): A = }76\mathrm{ neutron pairing
J. P. Schiffer et al., Phys. Rev. Lett. 100, 112501 (2008): A = 76neutron occupancies
B. P. Kay et al., Phys. Rev. C 79, 021301(R)(2009): A = 76 proton occupancies
T. Bloxham et al., Phys. Rev. C 82, 027308 (2010): A = }130\mathrm{ neutron (and proton) pairing
J. S. Thomas et al., Phys. Rev. C 86, 047304 (2012): A = }100\mathrm{ neutron pairing
B. P. Kay et al., Phys. Rev. C 87, 011302(R)(2013): A = }130\mathrm{ neutron occupancies
A. Roberts et al., Phys. Rev. C 87, 051305(R)(2013): A = 76 proton pairing
J. P. Entwisle et al., Phys. Rev. C 93, 064312 (2016): A = 130 and A = 136 proton occupancies
S. V. Szwec et al., Phys. Rev. C 94, 054314 (2016): A = 136 neutron occupancies
S. J. Freeman et al., Phys. Rev. C 96, 054325 (2017): A = 100 proton and neutron occupancies
```

D. K. Sharp et al., upcoming works on $A=116,124$, and 150 neutron occupancies
A. Neacsu and M. Horoi, Phys. Rev. C 91, 024309 (2015) [SM1]
J. Menéndez et al., Nucl. Phys. A 818, 139 (2009) [SM2] J. Kotila and J. Barea, Phys. Rev. C 94, 034320 (2016) [IBM] J. Suhonen and O. Civitarese, Nucl. Phys. A 847, 207 (2010) [QRPA]

Cryogenic targets, gas targets

EXP

SM1

Valence neutron properties relevant to the neutrinoless double- β decay of ${ }^{130} \mathrm{Te}$
B. P. Kay, ${ }^{1, *}$ T. Bloxham, ${ }^{2}$ S. A. McAllister, ${ }^{3}$ J. A. Clark, ${ }^{4}$ C. M. Deibel, ${ }^{4,5, \dagger}$ S. J. Freedman, ${ }^{2}$ S. J. Freeman, ${ }^{3}$ K. Han, ${ }^{2}$ A. M. Howard, ${ }^{3, \ddagger}$ A. J. Mitchell,,${ }^{3, \S}$ P. D. Parker, ${ }^{6}$ J. P. Schiffer, ${ }^{4}$ D. K. Sharp, ${ }^{3}$ and J. S. Thomas ${ }^{3}$

[^8]

RCNP

Schiffer et al., Phys. Rev. Lett. 100, 112501 (2008)

Overview of all results

Pairing, and old data

Pairing properties

Can the ground states of the candidates be described as 'seas' of correlated 0^{+}paired

Pairing around A ~ 76

Pair-transfer reactions are a simple and effective probe of pairing correlations No evidence of 'pairing vibrations' in the $A=76$ region

[^9]
Pairing around A ~ 100

$0^{0+0.51 \%}$ Systematics from (t, p) Rahman et al. PRC 73, 054311 (2012)
2^{+}

2^{+}
2^{+}
$\frac{\mathrm{o}^{+}, 69 \%}{{ }^{96} \mathrm{Mo}_{54}} \frac{\mathrm{o}^{+}, 86 \%}{{ }^{98} \mathrm{Mo}_{56}} \quad \frac{0^{+}, 100 \%}{{ }^{100} \mathrm{Mo}_{58}} \frac{0^{+}, 77 \%}{{ }^{102} \mathrm{Mo}_{60}} \quad \frac{0^{+}}{{ }^{104} \mathrm{Mo}_{62}} \quad \frac{0^{+}}{{ }^{106} \mathrm{Mo}_{64}}$
Transitions strengths normalised to ${ }^{100} \mathrm{Mogs}$.

A transitional region with deformation playing a role in the nuclear structure:

- Reactions leading to and from ${ }^{100} \mathrm{Ru}$ show $\sim 95 \%$ of the $L=0(p, t)$ strength is in the g.s. (on the spherical side of the transitional region)
- For ${ }^{100} \mathrm{Mo}$ about 20% of the $L=O(p, t)$ strength is an excited 0^{+}, a shape-transitional nucleus
- No evidence for pairing vibrations, but structure is complicated (proton work remains to be done)

Pairing around A ~ 130, 136

Reaction	$E(\mathrm{MeV})$	$\sigma(\mathrm{mb} / \mathrm{sr})$	Ratio $^{\mathrm{a}}$	Normalized strength $^{\mathrm{b}}$
${ }^{128} \mathrm{Te}(p, t)$	0	4.21	90	1.21
	1.873	0.06	20	0.02
	2.579	0.15	21	0.04
${ }^{130} \mathrm{Te}(p, t)$	0	3.49	89	1.00
	1.979	0.05	50	0.01
${ }^{128} \mathrm{Te}\left({ }^{3} \mathrm{He}, n\right)$	0	0.24	-	0.01
	2.13	0.095	-	0.96
${ }^{130} \mathrm{Te}\left({ }^{3} \mathrm{He}, n\right)$	0	0.26	-	0.32
	1.85	0.098	-	1.00

From the proton-pair adding $\mathrm{Te}\left({ }^{3} \mathrm{He}, n\right)$ reactions by Alford et al., significant strength is seen in $\ell=0$ transitions to excited states ...
A classic case of pair vibration and likely a consequence of a sub-shell gap at $Z=64$
Consequences for QRPA? (Does the shell-model include this feature also?)

Recap ...

- Reactions $A(a, b) B$ reveal something about the atomic nucleus
- Single-nucleon transfer (shameful bias in these lectures) can:
- populate single-particle excitations
- allow us to deduce spectroscopic factors, ℓ
- ... and thus single-particle energies
- ... and thus occupancies / vacancies
- I showed \sim two topical examples from the last ~decade, where reactions have been an essential tool in basic nuclear structure and in connection to fundamental symmetries

... and next

- Exotic beams, spectrometers, ..., bubbles, isomers, ...

[^0]: - A 0.1 Ci radium source
 - $\sim 10^{10}$ a particles per second ($\sim 1 \mathrm{nA}$ of ${ }^{4} \mathrm{He}$)
 - a particles of 7.7 MeV (~1.9 MeV/u)
 - A gold foil of 0.00004 cm thick ($\sim 0.8 \mathrm{mg} / \mathrm{cm}^{2}$)
 - A telescope was used to look at flashes of light on a zinc sulphide screen

[^1]: E. Rutherford, Philosophical Magazine 21, 669 (1911)

[^2]: - A 0.1 Ci radium source
 - $\sim 10^{10}$ a particles per second ($\sim 1 \mathrm{nA}$ of ${ }^{4} \mathrm{He}$)
 - a particles of $7.7 \mathrm{MeV}(\sim 1.9 \mathrm{MeV} / \mathrm{u})$
 - A gold foil of 0.00004 cm thick ($\sim 0.8 \mathrm{mg} / \mathrm{cm}^{2}$)
 - A telescope was used to look at flashes of light on a zinc sulphide screen

[^3]: R. Broda, J. Phys. G: Nucl. Part. Phys 32, R151 (2006)

[^4]: J. P. Schiffer et al., Phys. Rev. Lett. 92, 162501 (2004)

[^5]: EXP neutrons- J. P. Schiffer et al., Phys. Rev. Lett. 100, 112501 (2008)
 EXP protons - BPK et al., Phys. Rev. C 79, 021301(R) (2009)
 A - QRPA by Rodin et al., priv. com., Nucl .Phys. A 766, 107 (2006)
 B - QRPA by Suhonen et al., priv. com., Phys. Lett. B 668, 277 (2008)

 $$
 \text { C - ISM by Caurier et al., priv. com., Phys. Rev. Lett. 100, } 052503 \text { (2008) }
 $$

[^6]: EXP neutrons- J. P. Schiffer et al., Phys. Rev. Lett. 100, 112501 (2008)
 EXP protons - BPK et al., Phys. Rev. C 79, 021301(R) (2009)
 A - QRPA by Rodin et al., priv. com., Nucl .Phys. A 766, 107 (2006)
 B - QRPA by Suhonen et al., priv. com., Phys. Lett. B 668, 277 (2008)

[^7]: ${ }^{\text {a }}$ Rows 3, 5, 7, and 9 .

[^8]: BPK et al., Phys. Rev. C 87, 011302(R) (2013)
 J. P. Entwisle et al., Phys. Rev. C 93, 064312 (2016)

[^9]: S. J. Freeman et al., Phys. Rev. C 75, 051301(R) (2007) [neutrons]
 A. Roberts et al., Phys. Rev. C 87, 051305(R) (2013) [protons]

