

Low Energy Nuclear Theory

KD Launey Louisiana State University

National Nuclear Physics Summer School 2019

Modeling nuclei: structure ... and reactions

I will focus on how to build on first principles (rooted in QCD) ... EFT approaches are also powerful (halo-EFT, EFT for deformed nuclei, etc.)

From INT-17-1a program "Toward Predictive Theories of Nuclear Reactions Across the Isotopic Chart"

National Nuclear Physics Summer School 2019

Interaction Renormalization

Effective interactions...

National Nuclear Physics Summer School 2019

Low Energy Nuclear Theory

LSU

National Nuclear Physics Summer School 2019

Similarity Renormalization Group (SRG)

Lecture 2

➢Bare NN+ Relative Kinetic Energy

Decouples model space

National Nuclear Physics Summer School 2019

Low Energy Nuclear Theory

LSU

```
Lecture 2
```

Similarity Renormalization Group (SRG) for Nuclear Physics

✤ He-4

- SRG-evolved chiral potentials
 - 3-body important
 - ✤ 4-body negligible in He-4
 - (for binding energy)

Similarity Renormalization Group (SRG) for Nuclear Physics

National Nuclear Physics Summer School 2019

Low Energy Nuclear Theory

ĹSU

Similarity Renormalization Group (SRG) for Nuclear Physics

National Nuclear Physics Summer School 2019

Similarity Renormalization Group (SRG) for Nuclear Physics

✤ He-4

- SRG-evolved chiral potentials
 - 3-body important
 - ✤ 4-body negligible in He-4 (for binding energy)

SRG-induced interactions
 become important in heavy nuclei!

Important: interaction renormalization changes
nuclear wave functions $|\Psi_s\rangle$;
to calculate observables, the operators need to be renormalized too

* E.g., for rms radii, need to use
$$\langle \Psi_s | U(s) \left(\sum_i \hat{r}_i^2 \right) U^*(s) | \Psi_s \rangle$$

Nontrivial (handling many-body operators)

National Nuclear Physics Summer School 2019

Effective interaction for reactions

Many-body problem

Exact solutions exist to about 5 nucleons.

Can we use this technique for larger A?

Effective interaction for reactions

Many-body problem

Exact solutions exist to about 5 nucleons.

Can we use this technique for larger A?

Use ab initio techniques to solve for the structure of target, and to derive effective interactions $\begin{bmatrix} effective interactions \end{bmatrix}$

Low Energy Nuclear Theory

National Nuclear Physics Summer School 2019

Scattering observables from first principles

National Nuclear Physics Summer School 2019

ĹSU

National Nuclear Physics Summer School 2019

Low Energy Nuclear Theory

LSU

Nuclei

Many-body approaches

National Nuclear Physics Summer School 2019

Inside the Nucleus ... the Insights

Irrotational flow

Nuclear ``superfluidity":

- ✤ Pairing gap: higher first 2⁺.
- Two-particle (2n or 2p) transfer enhancement.
- Low moment of inertia

Irrotational-flow rotation

From Rowe (2013)

Rotational modes

SU(3) model (Elliott model): shell model of deformation/rotations

From Rowe (2013)

Inside the Nucleus ... the Insights

Lab frame:

Vibrational modes

Intrinsic frame:

Giant resonance – monopole – (breathing mode)

Shape vibration

From Rowe (2013)

ĹSU

Nuclear compressibility rather stiff: ~80A^{-1/3} MeV

Low-energy vibrations not likely

- quadrupole -

Surface radius for λ -multipole vibrations (<u>lab frame</u>):

National Nuclear Physics Summer School 2019

$$H\Psi(\mathbf{r}_1,\mathbf{r}_2,...,\mathbf{r}_A) = E\Psi(\mathbf{r}_1,\mathbf{r}_2,...,\mathbf{r}_A)$$

National Nuclear Physics Summer School 2019

Lecture 2

A nucleons of mass m_N : \mathbf{r}_1 , \mathbf{p}_1 ; \mathbf{r}_2 , \mathbf{p}_2 ;...; \mathbf{r}_A , \mathbf{p}_A ; * $\Psi(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_A)$ Many-body Hamiltonian = kinetic energy + potential energy): $[\mathbf{p} = -i\hbar\nabla] H = \sum_{i=1}^{A} \frac{\mathbf{p}_{i}^{2}}{2m_{N}} + \sum_{i,j=1(i < j)}^{A} V_{NN} (\mathbf{r}_{i} - \mathbf{r}_{j}) + \sum_{i < j < k} (V_{NNN})_{ijk} + \dots$...actually, relative kinetic energy: $\frac{1}{A}\sum_{i=1}^{A}\frac{\left(\mathbf{p}_{i}-\mathbf{p}_{j}\right)^{2}}{2m_{N}}$ * Solve Schrödinger equation * $H\Psi(\mathbf{r}_1,\mathbf{r}_2,...,\mathbf{r}_A) = E\Psi(\mathbf{r}_1,\mathbf{r}_2,...,\mathbf{r}_A)$

> Identify dominant average potential (mean field): dictates choice for s.p. states (basis states)

$$\sum_{i,j=1(i$$

National Nuclear Physics Summer School 2019

Lecture 2

The shell model

 $\begin{array}{c} & \text{Many-particle state} \quad \overline{\varphi_a(\mathbf{r}_1)\varphi_b(\mathbf{r}_2)...\varphi_d(\mathbf{r}_A)} \\ & \text{Anti-symmetric many-particle basis states} \\ & \text{(Slater determinant):} \\ & \Phi_{ab...d}(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_A) = \frac{1}{\sqrt{A!}} \begin{vmatrix} \varphi_a(\mathbf{r}_1) & \varphi_a(\mathbf{r}_2) & \dots & \varphi_a(\mathbf{r}_A) \\ & \varphi_b(\mathbf{r}_1) & \varphi_b(\mathbf{r}_2) & \dots & \varphi_b(\mathbf{r}_A) \\ & \vdots & \vdots & \ddots & \vdots \\ & \varphi_d(\mathbf{r}_1) & \varphi_d(\mathbf{r}_2) & \dots & \varphi_d(\mathbf{r}_A) \end{vmatrix} \end{aligned}$

Particle 1 Particle 2 Particle A

Example for A=2 particles:

State:

$$\Phi_{24}\left(\mathbf{r}_{1},\mathbf{r}_{2}\right)=\frac{1}{\sqrt{2}}\left[\phi_{2}\left(\mathbf{r}_{1}\right)\phi_{4}\left(\mathbf{r}_{2}\right)-\phi_{2}\left(\mathbf{r}_{2}\right)\phi_{4}\left(\mathbf{r}_{1}\right)\right]$$

$$E = e_2 + e_4$$

National Nuclear Physics Summer School 2019

Low Energy Nuclear Theory

a b c d

The shell model

- Choice for s.p. states (basis states):
 often Harmonic Oscillator (HO)
- Solve Schrödinger equation: matrix eigenvalue problem

$$H\Psi(\mathbf{r}_1,\mathbf{r}_2,...,\mathbf{r}_A) = E\Psi(\mathbf{r}_1,\mathbf{r}_2,...,\mathbf{r}_A)$$

$$\Psi_{\alpha}(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_A) = \sum_{k=1}^{D} C_k^{\alpha} \Phi_k(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_A)$$

$$\begin{array}{cccc} H_{11} & H_{12} & \cdots & H_{1D} \\ H_{21} & H_{22} & \cdots & H_{2D} \\ \vdots & \vdots & \ddots & \vdots \\ H_{D1} & H_{D2} & \cdots & H_{DD} \end{array} \right) \begin{pmatrix} C_1^{\alpha} \\ C_2^{\alpha} \\ \vdots \\ C_D^{\alpha} \end{pmatrix} = E_{\alpha} \begin{pmatrix} C_1^{\alpha} \\ C_2^{\alpha} \\ \vdots \\ C_D^{\alpha} \end{pmatrix}$$

National Nuclear Physics Summer School 2019

HO s.p. states

… in Hilbert space (infinite!)

What is the best choice for basis?

Two-Body Matrix elements (TBME) fp shell

	jr	js	jt	ju	JΤ	Hsp4	GXPF1														
	p1/2	p1/2	p1/2	p1/2	1 0	-1.077001	-1.2431	p1/2	f5/2	p3/2	p3/2	2 1	0	-0.1923	p3/2	p3/2	p3/2	p3/2	0 1	-0.523662	-1.1165
	p1/2	p1/2	p1/2	p1/2	0 1	-0.209086	-0.4469	p1/2	f5/2	, p3/2	, f5/2	2 0	0	-0.354	p3/2	, p3/2	, p3/2	, p3/2	2 1	0.105489	-0.0887
	p1/2	p1/2	p1/2	p3/2	1 0	0	-0.849	p1/2	f5/2	p3/2	f5/2	3 0	0	1.0151	p3/2	p3/2	p3/2	f5/2	1 0	0	0.2373
	p1/2	p1/2	p3/2	p3/2	1 0	0	0.7675	p1/2	f5/2	p3/2	f5/2	2 1	0	-0.4043	p3/2	p3/2	p3/2	f5/2	3 0	0	0.2276
	p1/2	p1/2	p3/2	p3/2	0 1	-0.444876	-1.4928	p1/2	f5/2	p3/2	f5/2	3 1	0	-0.06	p3/2	p3/2	p3/2	f5/2	2 1	0	-0.4631
	p1/2	p1/2	p3/2	f5/2	1 0	0	0.8137	p1/2	f5/2	p3/2	f7/2	2 0	0	1.0933	p3/2	p3/2	p3/2	f7/2	3 0	0	-0.4309
	p1/2	p1/2	f5/2	f5/2	1 0	0	-0.3161	p1/2	f5/2	p3/2	f7/2	3 0	0	0.7227	p3/2	p3/2	p3/2	f7/2	2 1	0	-0.3738
	p1/2	p1/2	f5/2	f5/2	0 1	-0.54486	-0.8093	p1/2	f5/2	p3/2	f7/2	2 1	0	-0.803	p3/2	p3/2	f5/2	f5/2	1 0	0	0.0483
	p1/2	p1/2	f5/2	f7/2	1 0	0	-0.1928	p1/2	f5/2	p3/2	f7/2	3 1	0	-0.1814	p3/2	p3/2	f5/2	f5/2	3 0	0	-0.0546
	p1/2	p1/2	f7/2	f7/2	1 0	0	0.0271	p1/2	f5/2	f5/2	f5/2	3 0	0	-0.6276	p3/2	p3/2	f5/2	f5/2	0 1	-0.770548	-1.2457
	p1/2	p1/2	f7/2	f7/2	0 1	-0.816667	-0.38	p1/2	f5/2	f5/2	f5/2	2 1	0	-0.3208	p3/2	p3/2	f5/2	f5/2	2 1	0	0.0719
	p1/2	p3/2	p1/2	p3/2	10	-1.077001	-2.5068	p1/2	f5/2	f5/2	f7/2	2 0	0	-0.5447	p3/2	p3/2	f5/2	f7/2	1 0	0	-0.8914
	p1/2	p3/2	p1/2	p3/2	2 0	-1.077001	-2.3122	p1/2	f5/2	f5/2	f7/2	3 0	0	-0.6262	p3/2	p3/2	f5/2	f7/2	3 0	0	-0.6264
	p1/2	p3/2	p1/2	p3/2	1 1	0.105489	-0.1594	p1/2	f5/2	f5/2	f7/2	2 1	0	0.1537	p3/2	p3/2	f5/2	f7/2	2 1	0	-0.0717
	p1/2	p3/2	p1/2	p3/2	2 1	0.105489	-0.2938	p1/2	f5/2	f5/2	f7/2	31	0	-0.1105	p3/2	p3/2	f7/2	f7/2	1 0	0	-0.4313
	p1/2	p3/2	p1/2	f5/2	2 0	0	-0.69	p1/2	f5/2	f7/2	f7/2	30	0	-0.1082	p3/2	p3/2	f7/2	f7/2	3 0	0	-0.3415
	p1/2	p3/2	p1/2	f5/2	2 1	0	0.249	p1/2	f5/2	f7/2	f7/2	2 1	0	-0.1295	p3/2	p3/2	f7/2	f7/2	0 1	-1.154941	-0.7174
	p1/2	p3/2	p3/2	p3/2	1 0	0	-1.8059	p1/2	f7/2	p1/2	f7/2	30	-1.638477	-1.6968	p3/2	p3/2	f7/2	f7/2	2 1	0	-0.2021
	p1/2	p3/2	p3/2	p3/2	2 1	0	0.634	p1/2	f7/2	p1/2	f7/2	4 0	-1.638477	-1.0602	p3/2	f5/2	p3/2	f5/2	1 0	-1.077001	-2.7262
	p1/2	p3/2	p3/2	f5/2	10	0	0.993	p1/2	f7/2	p1/2	f7/2	31	0.08819	0.4873	p3/2	f5/2	p3/2	f5/2	2 0	-1.077001	-1.511
	11/0	2070	2070	10 10			A00EL	1/2	f7/2	p1/2	f7/2	4 1	0.08819	-0.1347	p3/2	f5/2	p3/2	f5/2	3 0	-1.077001	-0.5859
HO: Sir	nale-r	bart	icle	basi	is			/2	f7/2	p3/2	p3/2	30	0	-0.6411	p3/2	f5/2	p3/2	f5/2	4 0	-1.077001	-1.0882
()	<u>, , , , , , , , , , , , , , , , , , , </u>	-	1.			(5)		/2	f7/2	p3/2	f5/2	30	0	0.0354	p3/2	f5/2	p3/2	f5/2	1 1	0.105489	0.3284
	<u> / S</u>	39	·/2-2	d 3/2		[2]		/2	f7/2	p3/2	f5/2	4 0	0	-1.3607	p3/2	f5/2	p3/2	f5/2	2 1	0.105489	0.3608
-2	2d<	<	2	u 72—	1454		10/1	/2	f7/2	p3/2	f5/2	3 1	0	0.3891	p3/2	f5/2	p3/2	f5/2	3 1	0.105489	0.346
4ħω {			1	-7/2 -	:0 -72-	(6)	[04]	/2	f//2	p3/2	f5/2	4 1	0	0.6111	p3/2	f5/2	p3/2	f5/2	4 1	0.105489	-0.2584
even		/		g / 2 ···		107		/2	f//2	p3/2	f//2	30	0	-1.685	p3/2	15/2	p3/2	f//2	2 0	0	1.2708
1	1g.—(`							/2	f//2	p3/2	f//2	4 0	0	-0.1706	p3/2	15/2	p3/2	t//2	30	0	0.579
		``		â	0.96	/10)	[03]	50 /2	f//2	p3/2	T//2	3 1	0	0.1048	p3/2	15/2	p3/2	T//2	4 0	0	0.7103
		2.	1/2	,	y - 72 -	(10)	[30]		T//2	p3/2	T//2	4 1	0	0.3351	p3/2	15/2	p3/2	T//2	2 1	0	-0.5436
	20		1	f 5/2			[38]	12	17/2 f7/2	13/2 fE /2	13/2 fE /2	30	0	0.2621	p3/2	15/2 fE /2	p3/2	1772 f772	3 1	0	-0.1030
3hw {	4.6	\times_{-2i}	03/2	, ,2		(4)	_[00]	12	17/2 f7/2	13/2 f5/2	13/2 f7/2	4 1	0	0.2246	p3/2	15/2 f5/2	p3/2	1772 f5/2	4 1	0	-0.4546
odd (-	<u>ارر</u>	·				(0)	5001	nn /2	1772 f7/2	10/2 f5/2	1772 f7/2	3 0	0	-0.4232	p3/2	10/2 f5/2	10/2 f5/2	10/2 f5/2	2 0	0	0.477
		` <u> </u>	1	t 1/2 —		(8)	[28]	-28 /2	1772 f7/2	10/2 f5/2	1772 f7/2	4 0	0	-0.3789	p3/2	10/2 f5/2	10/2 f5/2	10/2 f5/2	3 0 2 1	0	0.32
	~							12	17/2 f7/2	13/2 f5/2	17/2 f7/2	3 1	0	0.3224	p3/2	15/2 f5/2	15/2 f5/2	13/2 f5/2	2 1	0	-0.050
$2h\omega$ \langle $-\frac{1}{2}$	2s	× 1.	10	1 1/2		{4}	[20]	·20 /2	1772 f7/2	13/2 f7/2	1772 f7/2	4 1	0	0.1907	p3/2	10/2 f5/2	10/2 f5/2	13/2 f7/2	4 1	0	1 2721
even (IO	~	5 72	15/4-		(2)		12	f7/2	f7/2	1772 f7/2	3 0	0	-0.8883	p3/2	10/2 f5/2	15/2 f5/2	1772 f7/2	2 0	0	0 508
				G 72		(0)	[14]	12	$n^{2}/2$	$n^{2}/2$	$n^{2}/2$	1 0	1 077001	0.2090	p3/2	15/2 f5/2	15/2 f5/2	f7/2	2 0	0	-0.370
		1.	14-			())	[0]		$p_{3/2}$	$p_{3/2}$	$p_{3/2}$	3 0	1 077001	2 280	p3/2	15/2 f5/2	15/2 f5/2	f7/2	1 0	0	0.7710
11-ա —	1p<		3/2				[6]	·o //2	psiz	p3/2	p3/2	3 0	-1.077001	-2.209	Ih2\5	1372	1372	1//2	4 0	U	-0.0406
odď	-						[0]														
0 —	1s	19	s1/2			(2)	-[2]	•2													1

National Nuclear Physics Summer School 2019

... and more two-body matrix elements

p3/2	f5/2	f5/2	f7/2	1	1	0	0.0521	f5/2	f5/2	f5/2	f7/2	5 (o lc	-1.1302
p3/2	f5/2	f5/2	f7/2	2	1	0	0.4247	f5/2	f5/2	f5/2	f7/2	2	1 0	0.5022
p3/2	f5/2	f5/2	f7/2	3	1	0	-0.0268	f5/2	f5/2	f5/2	f7/2	4	1 0	0.2709
p3/2	f5/2	f5/2	f7/2	4	1	0	0.2699	f5/2	f5/2	f7/2	f7/2	1 (o o	0.6511
p3/2	f5/2	f7/2	f7/2	1	0	0	-0.0907	f5/2	f5/2	f7/2	f7/2	3 (o o	0.4358
p3/2	f5/2	f7/2	f7/2	3	0	0	0.0752	f5/2	f5/2	f7/2	f7/2	5 (o o	0.1239
p3/2	f5/2	f7/2	f7/2	2	1	0	-0.1725	f5/2	f5/2	f7/2	f7/2	0	1 -1.414508	-1.3832
p3/2	f5/2	f7/2	f7/2	4	1	0	-0.2224	f5/2	f5/2	f7/2	f7/2	2	1 0	-0.2038
p3/2	f7/2	p3/2	f7/2	2	0	-1.638477	-0.5391	f5/2	f5/2	f7/2	f7/2	4	1 0	-0.0331
p3/2	f7/2	p3/2	f7/2	3	0	-1.638477	-1.0055	f5/2	f7/2	f5/2	f7/2	1 (0 -1.638477	-4.5802
p3/2	f7/2	p3/2	f7/2	4	0	-1.638477	-0.3695	f5/2	f7/2	f5/2	f7/2	2 (0 -1.638477	-3.252
p3/2	f7/2	p3/2	f7/2	5	0	-1.638477	-2.967	f5/2	f7/2	f5/2	f7/2	3 (0 -1.638477	-1.4019
p3/2	f7/2	p3/2	f7/2	2	1	0.08819	-0.6081	f5/2	f7/2	f5/2	f7/2	4 (0 -1.638477	-2.2583
p3/2	f7/2	p3/2	f7/2	3	1	0.08819	0.1561	f5/2	f7/2	f5/2	f7/2	5 (0 -1.638477	-0.6084
p3/2	f7/2	p3/2	f7/2	4	1	0.08819	-0.1398	f5/2	f7/2	f5/2	f7/2	6 (0 -1.638477	-3.0351
p3/2	f7/2	p3/2	f7/2	5	1	0.08819	0.5918	f5/2	f7/2	f5/2	f7/2	1	0.08819	-0.0889
p3/2	f7/2	f5/2	f5/2	3	0	0	0.166	f5/2	f7/2	f5/2	f7/2	2	0.08819	-0.175
p3/2	f7/2	f5/2	f5/2	5	0	0	0.0334	f5/2	f7/2	f5/2	f7/2	3	0.08819	0.6302
p3/2	f7/2	f5/2	f5/2	2	1	0	0.088	f5/2	f7/2	f5/2	f7/2	4	0.08819	0.4763
p3/2	f7/2	f5/2	f5/2	4	1	0	-0.2146	f5/2	f7/2	f5/2	f7/2	5	0.08819	0.7433
p3/2	f7/2	f5/2	f7/2	2	0	0	0.6381	f5/2	f7/2	f5/2	f7/2	6	0.08819	-0.9916
p3/2	f7/2	f5/2	f7/2	3	0	0	-0.254	f5/2	f7/2	f7/2	f7/2	1 (0 0	-1.8998
p3/2	f7/2	f5/2	f7/2	4	0	0	-0.1951	f5/2	f7/2	f7/2	f7/2	3 (0 0	-1.0917
p3/2	f7/2	f5/2	f7/2	5	0	0	-0.6743	f5/2	f7/2	f7/2	f7/2	5 (0 0	-1.2853
p3/2	f7/2	f5/2	f7/2	2	1	0	-0.0959	f5/2	f7/2	f7/2	f7/2	2	1 0	-0.2167
p3/2	f7/2	f5/2	f7/2	3	1	0	0.523	f5/2	f7/2	f7/2	f7/2	4	1 0	0.4999
p3/2	f7/2	f5/2	f7/2	4	1	0	0.2486	f5/2	f7/2	f7/2	f7/2	6	1 0	0.5643
p3/2	f7/2	f5/2	f7/2	5	1	0	0.481	f7/2	f7/2	f7/2	f7/2	1 (-2.078472	-1.2838
p3/2	f7/2	f7/2	f7/2	3	0	0	-0.8807	f7/2	f7/2	f7/2	f7/2	3 (-2.078472	-0.8418
p3/2	f7/2	f7/2	f7/2	5	0	0	-0.4265	f7/2	f7/2	f7/2	f7/2	5 (-2.078472	-0.7839
p3/2	f7/2	f7/2	f7/2	2	1	0	-0.516	f7/2	f7/2	f7/2	f7/2	7 (-2.078472	-2.6661
p3/2	f7/2	f7/2	f7/2	4	1	0	-0.2969	f7/2	f7/2	f7/2	f7/2	0	1 -1.845204	-2.4385
f5/2	f5/2	f5/2	f5/2	1	0	-1.077001	-0.8551	f7/2	f7/2	f7/2	f7/2	2	1 0.062016	-0.9352
f5/2	f5/2	f5/2	f5/2	3	0	-1.077001	-0.5599	f7/2	f7/2	f7/2	f7/2	4	1 0.062016	-0.1296
f5/2	f5/2	f5/2	f5/2	5	0	-1.077001	-2.2816	f7/2	f7/2	f7/2	f7/2	6	1 0.062016	0.2783
f5/2	f5/2	f5/2	f5/2	0	1	-0.838236	-1.2081							
f5/2	f5/2	f5/2	f5/2	2	1	0.105489	-0.4621							
f5/2	f5/2	f5/2	f5/2	4	1	0.105489	-0.1624							
f5/2	f5/2	f5/2	f7/2	1	0	0	0.2735							
f5/2	f5/2	f5/2	f7/2	3	0	0	-0.6378							

National Nuclear Physics Summer School 2019

Ca Isotopes Empirical interactions: from available data

Question

Binding Energies: 342.05 MeV (Ca-40) 350.41 MeV (Ca-41, 7/2⁻)+ 1 neutron in f7/2 361.90 MeV (Ca-42, 0⁺)+ 2 neutrons in f7/2

Ec = ? (energy due to core)

e_{f7/2}=? (energy of single nucleon)

 $V_{f7/2f7/2f7/2}^{01}$? (energy of two nucleons, *J*=0, *T*=1)

National Nuclear Physics Summer School 2019

Low Energy Nuclear Theory

ĹSIJ

Ca Isotopes Empirical interactions: from available data

Binding Energies: 342.05 MeV (Ca-40) 350.41 MeV (Ca-41, 7/2⁻) + 1 neutron in f7/2 361.90 MeV (Ca-42, 0⁺) + 2 neutrons in f7/2

Ec = -342.05 MeV (energy due to core)

e_{f7/2}=-350.41-(-342.05)=-8.36 MeV

 $V_{f7/2f7/2f7/2}^{01}$ =-361.90-(-342.05)-2*($e_{f7/2}$)=-3.12 MeV (J=0, T=1)

National Nuclear Physics Summer School 2019

Low Energy Nuclear Theory

ĹSIJ

National Nuclear Physics Summer School 2019

Ab initio models

Nuclear force

Many-body Approach

Nuclear properties: structure & reactions

♦ Hyperspherical Harmonics
 ♦ No-core Shell Model
 ♦ NCSM/Resonating Group Method
 ♦ Symmetry-adapted NCSM
 ♦ Importance Truncation NCSM
 ♦ Monte Carlo NCSM

I will give a few examples...

National Nuclear Physics Summer School 2019

♦Green's function Monte Carlo
 ♦Lattice Effective Field Theory
 ♦Coupled-cluster method
 ♦In-Medium SRG
 ♦Gorkov-Green's function
 ♦Many-body perturbation theory

Ab initio Variational and Green's Function Monte Carlo

> Variational Monte Carlo Ψ_{T} :

> contains variational parameters adjusted via energy minimization, E_T =

>excellent approximation >GFMC propagates the VMC $\,\Psi_{\rm T}$ to imaginary time

$$|\Psi(\tau)\rangle = e^{-(H-E_0)\tau}\Psi_T \xrightarrow{\tau \to \infty} |\Psi_0\rangle$$

(filters out excited-state contamination to leave lowest state of given \mathcal{J}^{π} ; \mathcal{T})

Virtually exact method Limited to local interactions Light nuclei

National Nuclear Physics Summer School 2019

From Wiringa (2006) -20 -30 ⁴He₆He 6Li 5/2⁻⁸He ⁷Li -50 Energy (MeV) Argonne v₁₈ -60 ⁸Be With Illinois-2 GFMC Calculations -70 ⁹Be ^{10}Be 10 September 2006 $10_{\mathbf{R}}$ -80 +IL2 Exp 12C

Lecture 2

Ab initio Coupled-cluster Theory

National Nuclear Physics Summer School 2019

Low Energy Nuclear Theory

ĹSIJ

Ab Initio No-Core Shell Model

- Harmonic-oscillator single-particle basis
- Construct many-body basis states (Slater determinants)
- Express Hamiltonian in this basis (huge matrix)
- Find low-lying states (eigenfunctions)

Convergence to exact solutions with increasing model space Limited to light nuclei No restrictions on interaction/nucleus

National Nuclear Physics Summer School 2019

Ab Initio Symmetry-adapted (SA) NCSM

National Nuclear Physics Summer School 2019

Low Energy Nuclear Theory

LSU

National Nuclear Physics Summer School 2019

Low Energy Nuclear Theory

ĹSIJ

Symmetries (Exact & Approximate)

Synnetry

Emergent symmetries within nuclei

National Nuclear Physics Summer School 2019

What physics can we learn from Sp basis?

National Nuclear Physics Summer School 2019

Symplectic Sp(3,R) Symmetry!

Formal definition

All linear canonical transformations of the single-particle phasespace observables

that preserve the canonical commutation relation

$$\left[x_{i\alpha}, p_{j\beta}\right] = i\hbar\delta_{ij}\delta_{\alpha\beta}$$

Generators: $Q_{ij} = \sum_{n} x_{ni} x_{nj}$, SU(3) in a HO shell (Elliott, 1958)

$$S_{ij} = \sum_{n} (x_{ni} p_{nj} + p_{ni} x_{nj}),$$
$$L_{ij} = \sum_{n} (x_{ni} p_{nj} - x_{nj} p_{ni}),$$

$$K_{ij}=\sum_n p_{ni}\,p_{nj},$$

Rowe, Rosensteel, Draayer, Hecht, Suzuki, Escher, Bahri,

Nucleus with A nucleons

Low Energy Nuclear Theory

National Nuclear Physics Summer School 2019

Lecture 2

Approximate Symmetry in Nuclei

National Nuclear Physics Summer School 2019

Low Energy Nuclear Theory

ĹSIJ

Efficacy of SA-NCSM: Li-6

National Nuclear Physics Summer School 2019

Low Energy Nuclear Theory

ĹSIJ

Collectivity in intermediate-mass nuclei

National Nuclear Physics Summer School 2019

Lecture 2

8 shells, N2LOopt 0⁺

2+

⁴⁸Ti, Q(2⁺) [e fm²]
Experiment...... -17.7
8 shells -19.3
(no effective charges)

Structure of Ca-48 and Ti-48

8 shells, N2LOopt 0⁺

SA-NCSM (selected):602,493 Complete model space:24,694,678,414

2+

LSU

SA-NCSM (selected):1,178,834 Complete model space: ...113,920,316,658

National Nuclear Physics Summer School 2019

National Nuclear Physics Summer School 2019

Low Energy Nuclear Theory

ĹSIJ

EMERGENT PHENOMENA IN Atomic Nuclei From Large-Scale Modeling

A Symmetry-Guided Perspective

Nuclear Collectivity – Experimental perspective (John L Wood)

Configuration–interaction models (Calvin W Johnson)

Symplectic rotor model (David J Rowe)

Electron Scattering in the Symplectic Shell Model (Jutta E Escher)

Lattice QCD (Thomas Luu and Andrea Shindler)

Ab Initio Lattice Effective Field Theory (Dean Lee)

Correlated Gaussian Approach and Clustering (Yasuyuki Suzuki and Wataru Horiuchi)

Symmetry-Adapted No-Core Shell Model (Jerry P Draayer, Tomas Dytrych and KD Launey)

Auxiliary–Field Quantum Monte Carlo Methods (Yoram Alhassid)

Lie Density Functional Theory (George Rosensteel)

Exactly Solvable Pairing (Feng Pan, Xin Guan & Jerry P Draayer)

National Nuclear Physics Summer School 2019