Lecture (2) Heavy-Ion Collisions: Experiments, Models and Phenomenology

Scott Pratt Department of Physics and Astronomy, National Superconducting Cyclotron Laboratory & Facility for Rare Isotope Beams Michigan State University

Phenomenology

As a philosophical movement:

From Wikipedia:

There are several assumptions behind phenomenology that help explain its foundations:

- 1. Phenomenologists reject the concept of objective research. They prefer grouping assumptions through a process called phenomenological epoché.
- 2. They believe that analyzing daily human behavior can provide one with a greater understanding of nature.
- 3. They assert that persons should be explored. This is because persons can be understood through the unique ways they reflect the society they live in.
- 4.Phenomenologists prefer to gather "capta", or conscious experience, rather than traditional data.
- 5. They consider phenomenology to be oriented toward discovery, and therefore they research using methods that are far less restrictive than in other sciences.

To a physicist:

- Experiment (momenta and IDs of tracks)
 - → Evolution of ε, P, v, ρ...
- Can be heuristic or semi-quantitative

Facilities

AGS(11A GeV), SPS(160A GeV), RHIC(100A+100A GeV), LHC(1.4A+1.4A TeV)

Facility	Operating	Equiv. pp c.o.m. Energy	Temperature
AGS at BNL	1990s	≂ 6 GeV	≂ 160 MeV
SPS at CERN	1990s —	≂ 20 GeV	≂ 200 MeV
RHIC at BNL	2000 —	≲ 200 GeV	≂ 300 MeV
LHC at CERN	2010 —	≂ 15 TeV	≲ 400 MeV

SPS: Briefly visits QGP RHIC and LHC: Well into QGP

ASIDE: 3 kinds of rapidity

- "y", the rapidity, is a measure of velocity along beam axis — rapidities add, just like Newtonian velocities
- 2. " η ", the pseudo-rapidity is approximation to "y"

- depends on θ , angle relative to beam axis

— for massless particles $y = \eta$

3. " η_s " Is the spatial rapidity

- measure of position along z axis (Bjorken coordinates)

ASIDE: 3 kinds of rapidity

Consider v along z axis

$$\gamma^{2} - \gamma^{2}v^{2} = \frac{1}{1 - v^{2}} - \frac{v^{2}}{1 - v^{2}} = 1$$
$$u_{0} = \gamma, \quad u_{z} = \gamma v, \quad u_{0}^{2} - u_{z}^{2} = 1$$

$$u^{\alpha} = (\gamma, \gamma v) = (\cosh y, \sinh y)$$

$$u^{\alpha}_{B} = (\gamma_{B}, \gamma_{B}v_{B}) = (\cosh y_{B}, \sinh y_{B})$$

$$u'^{\alpha} = (u_{0}\gamma_{B} + u_{z}\gamma_{B}v_{B}, u_{z}\gamma_{B} + u_{0}\gamma_{B}v_{B})$$

(as the weath $w_{ab} + a \sinh w_{b} \sinh w_{b}$ with $w_{ab} = a \sinh w_{b}$

 $= (\cosh y \cosh y_B + \sinh y \sinh y_B, \sinh y \cosh y_B, \sinh y \cosh y_B, \sinh y_B \cosh y) = (\cosh(y + y_B), \sinh(y + y_B))$

Rapidity defined as:

$$y = \sinh^{-1}(\gamma v) = \tanh^{-1}(v) = \frac{1}{2}\ln\left[\frac{1+v}{1-v}\right]$$

RHIC beams: ± 5.4 units of y LHC beams: ± 9.5 units of y

Experiments measure mid-rapidity

$$y = \frac{1}{2} \ln \left[\frac{1 + v_z}{1 - v_z} \right]$$
$$\eta = \frac{1}{2} \ln \left[\frac{1 + \cos \theta}{1 - \cos \theta} \right]$$

STAR/ALICE measure best for $-1 < \eta < 1$

3 Modeling Stages

- 1. Pre-equilibrium, $\tau \approx 0.5$ fm/c
 - no good quasi-particles, off-shell
 - flux tubes or classical Yang-Mills field
 - parametric
- 2. Hydrodynamics (T≈160 MeV, 1 ≤ τ ≤ 5 fm/c)
 QGP
- 3. Hadron simulation (T≤160 MeV)
 - hadrons struggle to maintain chemical/kinetic equilibrium
- 4. Superimposed on 1 3:
 - Femtoscopic correlations, jets, heavy-flavor dynamics
 - correlations...

Pre-equilibrium

Hydrodynamics and the QGP

- 1. Justified because of strong interaction and nearly all light quasi-particles
- 2. Eq. of state can come from lattice
- 3. Must account for viscosity

Israel-Stewart equations (several variants)

$$\partial_t \pi_{ij} = -\frac{1}{\tau_{IS}} \left(\pi_{ij} - \pi_{ij}^{(NS)} \right) + \cdots$$

Arbitrary initial anisotropy of SE tensor Parameters are viscosity and relaxation times

Why is hydro valid?

Hydro is based on:

- a) energy-momentum conservation
- b) profiles are smooth on scale of system
- c) T_{ij} is not too far from equilibrium
- d) different species don't flow differently

Should work for QGP a) Israel-Stewart is flexible $\partial_t \pi_{ij} = -\frac{1}{\tau_{IS}} \left(\pi_{ij} - \pi_{ij}^{(NS)} \right) + \cdots$

- b) dominated by light degrees of freedom
 - not true for hadron gas

Two-dimensional reduction of hydro

"Translational" invariance along beam axis Small boosts along beam axis don't change physics Bjorken coordinates

 $\epsilon(\tau)$ — Nothing depends on η_s , no longitudinal acceleration Hydro becomes effectively 2-D Doesn't apply for lower RHIC energies

Collective Flow

- 1. Hallmark of hydrodynamic behavior
- 2. Reduced by viscosity
- 3. Radial, elliptic, etc

Radial flow

Non-relativistically,

$$\left\langle \frac{p_x^2}{2m} + \frac{p_y^2}{2m} \right\rangle = T + \frac{m}{2} v_{\text{coll}}^2$$

Spectra hotter for protons than pions More pressure — more flow

Flow velocities ~ 0.7c

ALICE SPECTRA

Elliptic Flow

Suggests low viscosity (close to uncertainty limit)

P.Danielewicz and M.Gyulassy, PRD(1985)

$$v_n \equiv \left\langle \cos(n\phi) \right\rangle$$

Elliptic flow

Femtoscopic Correlations

$$P_{2}(\boldsymbol{p}_{a}, \boldsymbol{p}_{b}) = P_{1}(\boldsymbol{p}_{a})P_{1}(\boldsymbol{p}_{b}) + \frac{1}{(2\pi\hbar)^{6}} \int d^{3}r_{a}d^{3}r_{b} f(\bar{\boldsymbol{p}}, \boldsymbol{r}_{a}, t)f(\bar{\boldsymbol{p}}, \boldsymbol{r}_{b}, t) \left\{ |\phi(\boldsymbol{q}, \boldsymbol{r}_{a} - \boldsymbol{r}_{b})|^{2} - 1 \right\}$$
$$C(\boldsymbol{p}_{a}, \boldsymbol{p}_{b}) = \frac{P_{2}(\boldsymbol{p}_{a}, \boldsymbol{p}_{b})}{P_{1}(\boldsymbol{p}_{a})P_{1}(\boldsymbol{p}_{b})}$$

Low pressure: R_{out} >> R_{side} and R_{long} is large High pressure: R_{out} ~ R_{side} and R_{long} is small

Six dimensions C(p_a,p_b) analyzed

- Rout/long/side as functions of pt,y,φ
- Directions of ellipse
- non-Gaussian details of source
- Source sizes for pions, kaons, protons, Lambdas
- Relative offset for different species, e.g. πp , Kp, K π
 - At low energy, correlations with d,t, α ,Li,C...

All consistent with large collective flow!

Correlations from Charge Conservation — **Balance Functions**

$$B(p_b|p_a) = \frac{P_{+-}(p_a, p_b) - P_{++}(p_a, p_b)}{2P_{+}(p_a)} + \frac{P_{-+}(p_a, p_b) - P_{--}(p_a, p_b)}{2P_{-}(p_a)}$$
• Integrates to unity
• Early production broader BFs
• Larger diffusion broader BFs
• Can be indexed on species
— strangeness/baryons made early, electric charge made late
— Narrow $\pi\pi$ BFs, broad pp and KK BFs
• T (MeV)

•

•

•

S.P., W.McCormack and C.Ratti, PRC 2015

Phenomenology — **Diffusivity**

Similar work already done for charm, Bernhard & Bass

Electromagnetic Signals Penetrating Probes

- Photon has ~90% chance of traversing fireball
- Direct photons
 - Must subtract contribution from meson decays (π_0)
- Dileptons
 - Function of invariant mass

Dileptons

ρ peak not 5x pp!!Doesn't exist in QGP

Excess at 500 MeV Meson masses Hadronization? Shifted ρ?

Beam Energy Scan at RHIC: 2019-2021

- Energies from 7.7 GeV up (to 200)
- Less T, significantly more ρ_B
- Search for phase transition
 - correlations and fluctuations
- Difficult to model:
 - 3D
 - Larger corona
 - EoS depends on baryon density
 - Hadron simulation needs mean fields
 - Stopping 4-dimensional
 - Phase separation/critical phenomena dynamics difficult

Modeling Phase Dynamics

Need gradient terms and thermal noise to

 a) generate critical correlations
 b) generate surface energies

c) finite-size droplets

Ideas from: Stephanov (hydro+), Steinheimer, Young, Kapusta, S.P.,...

$$\begin{split} \epsilon_{\kappa} &= \epsilon + \frac{1}{2}\rho\nabla^{2}\rho, \\ s &= \bar{s}(\epsilon_{\kappa},\rho), \\ \beta &= \bar{\beta}(\epsilon_{\kappa},\rho), \text{ S.P. PRC 2018} \\ \alpha &= \bar{\alpha}(\epsilon_{\kappa},\rho) + \frac{\bar{\beta}\kappa}{2}\nabla^{2}\rho + \frac{\kappa}{2}\nabla^{2}(\bar{\beta}\rho), \\ M_{i} &= -\frac{\kappa}{2}\rho(\partial_{j}\rho)(\partial_{i}v_{j} + \partial_{j}v_{i}) - \frac{\kappa}{2}\rho^{2}\partial_{i}\boldsymbol{\nabla}\cdot\boldsymbol{v} + \frac{\kappa}{2}\rho(\partial_{i}\rho)\boldsymbol{\nabla}\cdot\boldsymbol{v}, \\ T_{ij} &= \bar{P}\delta_{ij} - \kappa\left[\rho\nabla^{2}\rho + \frac{1}{2}(\boldsymbol{\nabla}\rho)^{2}\right]\delta_{ij} + \kappa(\partial_{i}\rho)(\partial_{j}\rho), \end{split}$$

Open questions & puzzles (soft physics)

How is flow generated in small systems?
Why so many direct photons? (hadronization?)
What is the source of soft dileptons?
Can we infer EoS for B≠0? (beam energy scan)
Can we model signals of critical point or phase separation?
— if so, could signals be observable?

Jets and heavy flavor: Coming soon to a theatre near you