Lecture (2) Heavy-Ion Collisions: Experiments, Models and Phenomenology

Scott Pratt
Department of Physics and Astronomy,
National Superconducting Cyclotron Laboratory
\& Facility for Rare Isotope Beams
Michigan State University

Phenomenology

As a philosophical movement:

From Wikipedia:
There are several assumptions behind phenomenology that help explain its foundations:
1.Phenomenologists reject the concept of objective research. They prefer grouping assumptions through a process called phenomenological epoché.
2.They believe that analyzing daily human behavior can provide one with a greater understanding of nature.
3.They assert that persons should be explored. This is because persons can be understood through the unique ways they reflect the society they live in.
4.Phenomenologists prefer to gather "capta", or conscious experience, rather than traditional data.
5.They consider phenomenology to be oriented toward discovery, and therefore they research using methods that are far less restrictive than in other sciences.

To a physicist:

- Experiment (momenta and IDs of tracks)
\rightarrow Evolution of $\varepsilon, P, v, \rho \ldots$
- Can be heuristic or semi-quantitative

Facilities

AGS(11A GeV), SPS(160A GeV), RHIC(100A+100A GeV), LHC(1.4A+1.4A TeV)

Facility	Operating	Equiv. pp c.o.m. Energy	Temperature
AGS at BNL	1990s	¢ 6 GeV	¢ 160 MeV
SPS at CERN	1990s -	$\leq 20 \mathrm{GeV}$	¢ 200 MeV
RHIC at BNL	2000 -	s 200 GeV	s 300 MeV
LHC at CERN	2010 -	s 15 TeV	S 400 MeV

SPS: Briefly visits QGP

RHIC and LHC: Well into QGP

ASIDE: $\mathbf{3}$ kinds of rapidity

1. " y ", the rapidity, is a measure of velocity along beam axis — rapidities add, just like Newtonian velocities
2. " η ", the pseudo-rapidity is approximation to " y "

- depends on θ, angle relative to beam axis
—for massless particles $\boldsymbol{y}=\eta$

3. " η_{s} " Is the spatial rapidity
— measure of position along z axis (Bjorken coordinates)

ASIDE: 3 kinds of rapidity

Consider valong z axis

$$
\begin{aligned}
\gamma^{2}-\gamma^{2} v^{2} & =\frac{1}{1-v^{2}}-\frac{v^{2}}{1-v^{2}}=1 \\
u_{0} & =\gamma, \quad u_{z}=\gamma v, \quad u_{0}^{2}-u_{z}^{2}=1
\end{aligned}
$$

$$
u^{\alpha}=(\gamma, \gamma v)=(\cosh y, \sinh y)
$$

$$
u_{B}^{\alpha}=\left(\gamma_{B}, \gamma_{B} v_{B}\right)=\left(\cosh y_{B}, \sinh y_{B}\right)
$$

$$
u^{\prime \alpha}=\left(u_{0} \gamma_{B}+u_{z} \gamma_{B} v_{B}, u_{z} \gamma_{B}+u_{0} \gamma_{B} v_{B}\right)
$$

$$
=\left(\cosh y \cosh y_{B}+\sinh y \sinh y_{B}, \sinh y \cosh y_{B}, \sinh y_{B} \cosh y\right)=\left(\cosh \left(y+y_{B}\right), \sinh \left(y+y_{B}\right)\right)
$$

Rapidity defined as:
$y=\sinh ^{-1}(\gamma v)=\tanh ^{-1}(v)=\frac{1}{2} \ln \left[\frac{1+v}{1-v}\right]$

RHIC beams: ± 5.4 units of y LHC beams: ± 9.5 units of y

Experiments measure mid-rapidity

STARIALICE measure best for $-1<\eta<1$

3 Modeling Stages

1. Pre-equilibrium, $\tau \leqslant 0.5 \mathrm{fm} / \mathrm{c}$

- no good quasi-particles, off-shell
- flux tubes or classical Yang-Mills field
- parametric

2. Hydrodynamics ($\mathrm{T} \approx 160 \mathrm{MeV}, 1 \leqslant \tau \leqslant 5 \mathrm{fm} / \mathrm{c}$)

- QGP

3. Hadron simulation ($\mathrm{T} \leqslant 160 \mathrm{MeV}$)

- hadrons struggle to maintain chemical/kinetic equilibrium

4. Superimposed on 1-3:

- Femtoscopic correlations, jets, heavy-flavor dynamics
- correlations...

Pre-equilibrium

Two kinds of energy deposition:

1. Partonic Scattering
2. Fields

$$
\text { Energy } \sim \frac{A}{2}|\vec{E}|^{2}(2 c \tau)
$$

Energy increases over time (negative pressure)

$$
T_{00}=\frac{E^{2}}{2}, \quad T_{x x}=T_{y y}=\frac{E^{2}}{2}, \quad T_{z z}=-\frac{E^{2}}{2}
$$

QCD similar, but with 8 interacting fields (color-glass condensate)

Hydrodynamics and the QGP

1. Justified because of strong interaction and nearly all light quasi-particles
2. Eq. of state can come from lattice
3. Must account for viscosity

Israel-Stewart equations (several variants)

$$
\partial_{t} \pi_{i j}=-\frac{1}{\tau_{I S}}\left(\pi_{i j}-\pi_{i j}^{(\mathrm{NS})}\right)+\cdots
$$

Arbitrary initial anisotropy of SE tensor
Parameters are viscosity and relaxation times

Why is hydro valid?

Hydro is based on:
a) energy-momentum conservation
b) profiles are smooth on scale of system
c) $T_{i j}$ is not too far from equilibrium
d) different species don't flow differently

Should work for QGP
a) Israel-Stewart is flexible

$$
\partial_{t} \pi_{i j}=-\frac{1}{\tau_{I S}}\left(\pi_{i j}-\pi_{i j}^{(\mathrm{NS})}\right)+\cdots
$$

b) dominated by light degrees of freedom

- not true for hadron gas

Two-dimensional reduction of hydro

"Translational" invariance along beam axis Small boosts along beam axis don't change physics Bjorken coordinates

$\varepsilon(\tau)$ - Nothing depends on η_{s}, no longitudinal acceleration
Hydro becomes effectively 2-D
Doesn't apply for lower RHIC energies

Collective Flow

1. Hallmark of hydrodynamic behavior
2. Reduced by viscosity
3. Radial, elliptic, etc

Radial flow

Non-relativistically,
$\left\langle\frac{p_{x}^{2}}{2 m}+\frac{p_{y}^{2}}{2 m}\right\rangle=T+\frac{m}{2} v_{\text {coll }}^{2}$
Spectra hotter for protons than pions
More pressure - more flow
Flow velocities $\sim 0.7 c$

ALICE SPECTRA

Elliptic Flow

$$
v_{2} \equiv\langle\cos 2 \phi\rangle
$$

Suggests low viscosity (close to uncertainty limit)
P.Danielewicz and M.Gyulassy, PRD(1985)

Higher Moments of Flow

$$
v_{n} \equiv\langle\cos (n \phi)\rangle
$$

Elliptic flow

Reflects on lumpiness of initial conditions

Femtoscopic Correlations

$P_{2}\left(\boldsymbol{p}_{a}, \boldsymbol{p}_{b}\right)=P_{1}\left(\boldsymbol{p}_{a}\right) P_{1}\left(\boldsymbol{p}_{b}\right)+\frac{1}{(2 \pi \hbar)^{6}} \int d^{3} r_{a} d^{3} r_{b} f\left(\overline{\boldsymbol{p}}, \boldsymbol{r}_{a}, t\right) f\left(\overline{\boldsymbol{p}}, \boldsymbol{r}_{b}, t\right)\left\{\left|\phi\left(\boldsymbol{q}, \boldsymbol{r}_{a}-\boldsymbol{r}_{b}\right)\right|^{2}-1\right\}$
$C\left(\boldsymbol{p}_{a}, \boldsymbol{p}_{b}\right)=\frac{P_{2}\left(\boldsymbol{p}_{a}, \boldsymbol{p}_{b}\right)}{P_{1}\left(\boldsymbol{p}_{a}\right) P_{1}\left(\boldsymbol{p}_{b}\right)}$
Low pressure: $\boldsymbol{R}_{\text {out }} \gg \boldsymbol{R}_{\text {side }}$ and $\boldsymbol{R}_{\text {long }}$ is large High pressure: $R_{\text {out }} \sim R_{\text {side }}$ and $R_{\text {long }}$ is small

Femtoscopic Correlations

- Stiffer EoS
(blue to green)

S.P. PRL $2009 k_{t}(\mathrm{MeV} / \mathrm{c})$

Six dimensions $\mathbf{C}\left(\mathbf{p a}_{\mathrm{a}}, \mathbf{p}_{b}\right)$ analyzed

- Routlong/side as functions of $p_{t}, \mathrm{y}, \varphi$
- Directions of ellipse
- non-Gaussian details of source
- Source sizes for pions, kaons, protons, Lambdas
- Relative offset for different species, e.g. $\pi p, K p, K \pi$
- At low energy, correlations with d,t, $\alpha, L i, C . .$.

All consistent with large collective flow!

Correlations from Charge Conservation Balance Functions

$$
B\left(p_{b} \mid p_{a}\right)=\frac{P_{+-}\left(p_{a}, p_{b}\right)-P_{++}\left(p_{a}, p_{b}\right)}{2 P_{+}\left(p_{a}\right)}+\frac{P_{-+}\left(p_{a}, p_{b}\right)-P_{--}\left(p_{a}, p_{b}\right)}{2 P_{-}\left(p_{a}\right)}
$$

- Integrates to unity
- Early production broader BFs
- Larger diffusion broader BFs
- Can be indexed on species
- strangeness/baryons made early, electric charge made late
- Narrow $\pi \pi$ BFs, broad pp and KK BFs

$C_{a b}\left(t, \mathbf{r}_{1}, \mathbf{r}_{2}\right)=\left\langle\delta \rho_{a}\left(t, \mathbf{r}_{1}\right) \delta \rho_{b}\left(t, \mathbf{r}_{2}\right)\right\rangle$

$$
\partial_{t} C_{a b}+\nabla_{1} \cdot\left(\mathbf{v}_{1} C_{a b}\right)+\nabla_{2} \cdot\left(\mathbf{v}_{2} C_{a b}\right)
$$

$$
-D \nabla_{1}^{2} C_{a b}-D \nabla_{2}^{2} C_{a b}=S_{a b}\left(t, \mathbf{r}_{1}\right) \delta\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
$$

$$
S_{a b}(t, \mathbf{r})=-s \frac{D}{D t} \frac{\chi_{a b}(t, \mathbf{r})}{s}
$$

IV. Phenomenology

Susceptibility

Phenomenology — Diffusivity

Strangeness made early
\therefore kaon separation determined by diffusivity

Electromagnetic Signals Penetrating Probes

- Photon has $\mathbf{\sim 9 0 \%}$ chance of traversing fireball
- Direct photons
- Must subtract contribution from meson decays (π_{0})
- Dileptons
- Function of invariant mass

Beam Energy Scan at RHIC: 2019-202I

- Energies from 7.7 GeV up (to 200)
- Less T, significantly more ρ_{B}
- Search for phase transition - correlations and fluctuations
- Difficult to model:
-3D
- Larger corona
- EoS depends on baryon density
- Hadron simulation needs mean fields
- Stopping 4-dimensional
- Phase separation/critical phenomena dynamics difficult

Modeling Phase Dynamics

- Need gradient terms and thermal noise to
a) generate critical correlations
b) generate surface energies
c) finite-size droplets

Ideas from:
Stephanov (hydro+), Steinheimer, Young, Kapusta, S.P.,...

$$
\begin{aligned}
\epsilon_{\kappa} & =\epsilon+\frac{1}{2} \rho \nabla^{2} \rho, \\
s & =\bar{s}\left(\epsilon_{\kappa}, \rho\right), \\
\beta & =\bar{\beta}\left(\epsilon_{\kappa}, \rho\right), \text { S.P. PRC } 2018 \\
\alpha & =\bar{\alpha}\left(\epsilon_{\kappa}, \rho\right)+\frac{\bar{\beta} \kappa}{2} \nabla^{2} \rho+\frac{\kappa}{2} \nabla^{2}(\bar{\beta} \rho), \\
M_{i} & =-\frac{\kappa}{2} \rho\left(\partial_{j} \rho\right)\left(\partial_{i} v_{j}+\partial_{j} v_{i}\right)-\frac{\kappa}{2} \rho^{2} \partial_{i} \nabla \cdot \boldsymbol{v}+\frac{\kappa}{2} \rho\left(\partial_{i} \rho\right) \nabla \cdot \boldsymbol{v} \cdot, \\
T_{i j} & =\bar{P} \delta_{i j}-\kappa\left[\rho \nabla^{2} \rho+\frac{1}{2}(\nabla \rho)^{2}\right] \delta_{i j}+\kappa\left(\partial_{i} \rho\right)\left(\partial_{j} \rho\right),
\end{aligned}
$$

Open questions \& puzzles (soft physics)

How is flow generated in small systems?
Why so many direct photons? (hadronization?)
What is the source of soft dileptons?
Can we infer EoS for $B \neq 0$? (beam energy scan)
Can we model signals of critical point or phase separation?

- if so, could signals be observable?

Jets and heavy flavor: Coming soon to a theatre near you

