# Bayesian Model/Data Analysis Big Experiment vs Big Theory 

 Lessons from Relativistic Heavy Ion Collisions
## Models and Data Analysis Initiative http://madai.us



Ist MADAI Collaboration Meeting, SANDIA 2010

# BIG EXPERIMENT 

Large,
Heterogenous Data Sets



Atmospheric modeling

## GOALS

- Determine parameters
- Test assumptions
- Identify connections between observables and parameters



## BAYES theorem

$$
\begin{aligned}
P(A \& B) & =P(A \mid B) P(B)=P(B \mid A) P(A) \\
P(B \mid A) & =\frac{P(A \mid B) P(B)}{P(A)}
\end{aligned}
$$


$P(A \mid B)$ is probability of data given theory(parameters) $\mathrm{P}(\mathrm{B} \mid \mathrm{A})$ is probability of theory(parameters) given data

## MODEL COMPONENTS



## MODEL COMPONENTS

- Thermalization
(First fm/c)
- Viscous Hydrodynamics
(First $\sim 5-10 \mathrm{fm} / \mathrm{c}$ )
- Hadron Simulation
(Dissolution \& Breakup)
- Numerous parameters
(up to few dozen)
- ~Days of CPU to study one point in parameter space



## OBSERVABLES: Spectra

| feature | infer |
| :---: | :---: |
| Yields | entropy |
| $\left\langle\mathrm{P}_{\mathrm{t}}\right\rangle$ | T and flow |
| $\left\langle\mathrm{P}_{\mathrm{t}}\right\rangle$ of heavy particles | more flow than $\mathbf{T}$ |

W.Florkowski \& W. Bronkowski, NPA 2003

## OBSERVABLES: v2 (elliptic flow)



$$
v_{2}=\langle\cos 2 \phi\rangle
$$



Sensitive to viscosity

## OBSERVABLES: Femtoscopic Correlations

$$
\begin{gathered}
C\left(P=p_{1}+p_{2}, q=p_{1}-p_{2}\right)=\frac{d^{2} N / d p_{1} d p_{2}}{\left(d N / d p_{1}\right)\left(d N / d p_{2}\right)} \\
C(P, q) \rightarrow S(P, r)=\frac{\int d r_{1} d r_{2} f\left(P / 2, r_{2}\right) f\left(P / 2, r_{2}\right) \delta\left(r-\left[r_{1}-r_{2}\right]\right)}{\int d r_{1} d r_{2} f\left(P / 2, r_{2}\right) f\left(P / 2, r_{2}\right)}
\end{gathered}
$$





## How this was done before ( v 2 and $\mathrm{n} / \mathrm{s}$ )

$$
v_{2} \equiv\langle\cos 2 \phi\rangle
$$




## PROBLEM

## v2 depends on ....

- viscosity
- saturation model
- pre-thermal flow
- Eq. of State
- T-dependence of $\eta / s$
- initial $T_{x x} / T_{z z}$
e.g. Drescher, Dumitru, Gombeaud and Ollitrault PRC 2007


## Correct Way (MCMC)

- Simultaneously vary $N$ model parameters $\boldsymbol{x}_{\boldsymbol{i}}$
- Perform random walk weight by likelihood

$$
\mathcal{L}(\mathbf{x} \mid \mathbf{y}) \sim \exp \left\{-\sum_{a} \frac{\left(y_{a}^{(\text {model })}(\mathbf{x})-y_{a}^{(\exp )}\right)^{2}}{2 \sigma_{a}^{2}}\right\}
$$

- Use all observables $y_{a}$
- Obtain representative sample of posterior


## MCMC Metropolis algorithm

Imagine $N \rightarrow \infty$ instances (samplings) of parameters $x$ with probability $\mathrm{P}(\mathrm{x})$
Consider two point in parameter space $x_{i}$ and $x_{j_{j}}$ Rates of $\mathrm{i} \rightarrow \mathrm{j}$ and $\mathrm{j} \rightarrow \mathrm{i}$ are

$$
\begin{aligned}
R(i \rightarrow j) & =P(i) R(i \rightarrow j \mid i) \\
R(j \rightarrow i) & =P(j) R(j \rightarrow i \mid j) \\
R(j \rightarrow i \mid j) & =R(i \rightarrow j \mid i) \frac{P(i)}{P(j)}
\end{aligned}
$$

If in state "i" do random step if $P(j)>P(i)$, keep $100 \%$ if( $\mathrm{P}(\mathrm{i})>P(\mathrm{j})$, keep with prob. $\mathrm{P}(\mathrm{j}) / \mathrm{P}(\mathrm{i})$


## Difficult Because...

I. Too Many Model Runs

Requires running model $\sim 10^{6}$ times

II. Many Observables<br>Could be hundreds of plots, each with dozens of points Complicated Error Matrices

## Model Emulators

## I. Run the model ~ I 000 times

 Semi-random points (LHS sampling)2. Determine Principal Components

$$
\left(y_{a}-\left\langle y_{a}\right\rangle\right) / \sigma_{a} \rightarrow z_{a}
$$

## 3. Emulate $z_{a}$ (Interpolate) for MCMC

Gaussian Process...
$\mathcal{L}(\mathbf{x} \mid \mathbf{y}) \sim \exp \left\{-\frac{1}{2} \sum_{a}\left(z_{a}^{(\mathrm{emulator})}(\mathbf{x})-z_{a}^{(\mathrm{exp})}\right)^{2}\right\}$

S. Habib,K.Heitman,D.Higdon,C.Nakhleh\&B.Williams, PRD(2007)


- Gaussian Process
- Reproduces training points
- Assumes localized Gaussian covariance
- Must be trained, i.e. find "hyper parameters"
- Other methods also work


## | 4 Parameters

- 5 for Initial Conditions at RHIC
- 5 for Initial Conditions at LHC
- 2 for Viscosity
- 2 for Eq. of State


## 30 Observables

- $\pi, \mathrm{K}, \mathrm{p}$ Spectra $\left\langle p_{t}\right\rangle$, Yields
- Interferometric Source Sizes
- $\mathrm{v}_{2}$ Weighted by $\mathrm{p}_{\mathrm{t}}$


## Initial State Parameters

$$
\begin{aligned}
\epsilon(\tau=0.8 \mathrm{fm} / c) & \left.=f_{\mathrm{wn}}\right) \epsilon_{\mathrm{wn}}+\left(1-f_{\mathrm{wn}}\right) \epsilon_{\mathrm{cgc}}, \\
\epsilon_{\mathrm{wn}} & =\epsilon_{0} T A \frac{\sigma_{\mathrm{nn}}}{2\left(\sigma_{\mathrm{sat}}\right.}\left\{1-\exp \left(-\sigma_{\mathrm{sat}} T_{B}\right)\right\}+(A \leftrightarrow B) \\
\epsilon_{\mathrm{cgc}} & =\epsilon_{0} T_{\min } \frac{\sigma_{\mathrm{mn}}}{\sigma_{\mathrm{sat}}}\left\{1-\exp \left(-\sigma_{\mathrm{sat}} T_{\max }\right)\right\} \\
T_{\min } & \equiv \frac{T_{A} T_{B}}{T_{A}+T_{B}}, \\
T_{\mathrm{max}} & \equiv T_{A}+T_{B}, \\
u_{\perp} & =\alpha \lambda \frac{\partial T_{00}}{2 T_{00}} \\
T_{z z} & =\gamma \gamma P
\end{aligned}
$$

5 parameters for RHIC, 5 for LHC

## Equation of State and Viscosity

$c_{s}^{2}(\epsilon)=c_{s}^{2}\left(\epsilon_{h}\right)$

$$
\begin{aligned}
& +\left(\frac{1}{3}-c_{s}^{2}\left(\epsilon_{h}\right)\right) \frac{X_{0} x+x^{2}}{X_{0} x+x^{2}+\left(X^{\prime}\right)}, \\
X_{0} & =X\left({ }^{\prime} R g_{s}(\epsilon) \sqrt{12},\right. \\
x & \equiv \ln \epsilon / \epsilon_{h}
\end{aligned}
$$

$$
\frac{\eta}{s}=\frac{\eta}{s} T_{T=165}+\kappa \ln (T / 165)
$$

2 parameters for EoS, 2 for $\boldsymbol{\eta} / \mathrm{s}$

## DATA <br> Distillation

I. Experiments reduce PBs to 100 s of plots
2. Choose which data to analyze Does physics factorize?
3. Reduce plots to a few representative numbers, $y_{a}$
4. Transform to principal components, $z_{a}$

$$
\mathcal{L} \sim \exp \left\{\frac{-1}{2} \sum_{a}\left(z_{a}-z_{a}^{(\exp )}\right)^{2}\right\}
$$

5. Resolving power of RHIC/LHC data reduced to $\approx \mathbf{I O}$ numbers!

## Principal Component Analysis (PCA)

Many observables ya
All change as function of parameters $x_{i}$ BUT, some linear combinations change - some don't

$$
\begin{aligned}
\delta \tilde{y}_{a} & =\frac{\left(y_{a}-\left\langle y_{a}\right\rangle\right)}{\sigma_{a}} \text { average over } \mathbf{x} \\
M_{a b} & =\left\langle\delta \tilde{y}_{a} \delta \tilde{y}_{b}\right\rangle
\end{aligned}
$$

Diagaonalize M

$$
M \rightarrow\left(\begin{array}{cccc}
\lambda_{1} & 0 & 0 & 0 \\
0 & \lambda_{2} & 0 & 0 \\
0 & 0 & \lambda_{3} & 0 \\
0 & 0 & 0 & \lambda_{4}
\end{array}\right)
$$

## Principal Component Analysis (PCA) <br> $\delta \tilde{y}_{a}=\frac{\left(y_{a}-\left\langle y_{a}\right\rangle\right)}{\sigma_{a}}$ <br> $M_{a b}=\left\langle\delta \tilde{y}_{a} \delta \tilde{y}_{b}\right\rangle$ <br> $M \rightarrow$ Diagaonalize $\mathbf{M}$ <br>  <br> $\lambda_{1}$ <br> $\begin{array}{lll}0 & 0 & \lambda_{3}\end{array}$ <br> $0 \quad 0 \quad 0$ <br> , <br> 0 <br> $\left.\begin{array}{cc}0 & 0 \\ 0 & 0 \\ \lambda_{3} & 0 \\ 0 & \lambda_{4}\end{array}\right)$

In new basis, $y_{a} \leftrightarrow Z_{a}$
$z_{a}$ are known as principal components

If $\lambda_{\mathrm{a}} \gg 1$, good resolving power
If $\lambda_{\mathrm{a}} \ll 1$, little resolving power, no need to analyze


## Review the Grand Plan

I. Choose observables
2. Distill Data
3. Parameterize model
4. Run full model hundreds of times
(Latin hyper-cube sampling)
5. Build \& Tune emulator
6. Perform MCMC with emulator
7. Analyze sensitivities

## Two Calculations

J.Novak, K. Novak, S.P., C.Coleman-Smith \& R.Wolpert, PRC 2014

RHIC Au +Au Data 6 parameters

S.P., E.Sangaline, P.Sorensen \& H.Wang, PRL 2015 RHIC Au+Au and LHC Pb+Pb Data 14 parameters, include Eq. of State


## Sample Spectra from Prior and Posterior



## Sample HBT from <br> Prior and <br> Posterior




## Eq. of State

$$
\begin{aligned}
c_{s}^{2}(\epsilon) & =c_{s}^{2}\left(\epsilon_{h}\right) \\
& +\left(\frac{1}{3}-c_{s}^{2}\left(\epsilon_{h}\right)\right) \frac{X_{0} x+x^{2}}{X_{0} x+x^{2}+X^{\prime 2}}, \\
X_{0} & =X^{\prime} R c_{s}(\epsilon) \sqrt{12}, \\
x & \equiv \ln \epsilon / \epsilon_{h}
\end{aligned}
$$





## What should you expect for $\eta / s$ at $T=165$ MeV?

- ADSICFT: 0.08
- Perturbative QCD: > 0.5 ( $\sigma \approx 3 \mathrm{mb}$ )
- Hadron Gas: $\quad \approx 0.25(\sigma \approx 30 \mathrm{mb})$


## Extracted $\eta$ /s at T=165 MeV

 consistent with expectations for hadron gas!Does not rise strongly in QGP


## RESOLVING POWER OF OBSERVABLES

How does changing

$$
\begin{array}{r}
y_{\mathbf{a}, \exp } \text { or } \sigma_{\mathbf{a}} \\
\text { alter }\left\langle\left\langle\mathbf{x}_{\mathbf{i}}\right\rangle\right\rangle \text { or } \\
\left\langle\left\langle\delta \mathbf{x}_{\mathbf{i}} \delta \mathbf{x}_{\mathbf{j}}\right\rangle\right\rangle ?
\end{array}
$$

## We need

$\frac{\partial}{\partial y_{a}^{(\exp )}}\left\langle\left\langle x_{i}\right\rangle\right\rangle$
NOT
$\frac{\partial}{\partial x_{i}} y_{a}^{(\bmod )}$
E.Sangaline and S.P., arXiv 2015

## RESOLVING POWER OF OBSERVABLES

$$
\begin{aligned}
\left\langle\left\langle x_{i}\right\rangle\right\rangle= & \frac{\left\langle x_{i} \mathcal{L}\right\rangle}{\langle\mathcal{L}\rangle} \\
\frac{\partial}{\partial y_{a}^{(\exp )}}\left\langle\left\langle x_{i}\right\rangle\right\rangle= & \left\langle\left\langle x_{i}\left(\partial_{a} \mathcal{L}\right) / \mathcal{L}\right\rangle\right\rangle-\left\langle\left\langle x_{i}\right\rangle\right\rangle\left\langle\left\langle\left(\partial_{a} \mathcal{L}\right) / \mathcal{L}\right\rangle\right\rangle \\
= & \left\langle\left\langle\delta x_{i}\left(\partial_{a} \mathcal{L}\right) / \mathcal{L}\right\rangle\right\rangle \\
= & -\Sigma_{a b}^{-1}\left\langle\left\langle\delta x_{i} \delta y_{b}\right\rangle\right\rangle \quad \text { (for Gaussian) } \\
& \quad \delta x_{i}=x_{i}-\left\langle\left\langle x_{i}\right\rangle\right\rangle, \quad \delta y_{a}=y_{a}-y_{a}^{(\exp )}
\end{aligned}
$$

can find similar relation for $\frac{\partial}{\partial \sigma_{a}}\left\langle\left\langle\delta x_{i} \delta x_{j}\right\rangle\right\rangle$
E.Sangaline and S.P., PRC 2016





## What determines viscosity?

- Both $\mathrm{V}_{2}$ and multiplicities
- T-dependence comes from LHC $V_{2}$


## What determines EoS?

- Lots of observables
- Femtoscopic radii are important


## CONCLUSIONS

- Robust, emulation works splendidly
- Scales well to more parameters \& more data
- Eq. of State and Viscosity can be extracted from data
- Eq. of State consistent with lattice gauge theory
- Other parameters not as well constrained
- Heavy-Ion Physics can be a Quantitative Science!!!!


## FUTURE

- Improve statement of uncertainties
- Add parameters many related to hadronization region
- Consider more data
- more observables
- Beam energy scan (Yikes!!!!)
- Improve models
- Lumpy initial conditions
- 3D calculations for lower energies
- Fill in missing physics (e.g. bulk viscosity)


## THINGS TO KEEP IN MIND...

- Remember what you're trying to do
— parameter constraint?
—identify weakness of models?
— predictivity?
- not draw lines through data!
- more parameters(physics) are better
- Data can be redundant
- correlated uncertainties
- underestimates of uncertainty
- Models have systematic uncertainties
- requires objective self doubt

Additional slide:

S.P., C. Ratti and W.McCormack, PRC 2016 charge susceptibilities

