Bayesian Model/Data Analysis Big Experiment vs Big Theory Lessons from Relativistic Heavy Ion Collisions

Models and Data Analysis Initiative <u>http://madai.us</u>

MICHIGAN STATE Duke

of NORTH CAROLINA CONCI

Ist MADAI Collaboration Meeting, SANDIA 2010

BIG EXPERIMENT

Large, Heterogenous Data Sets

heavy ion collisions

Atmospheric modeling

- Determine parameters
- Test assumptions
- Identify connections between observables and parameters

BOTH ARE NUMERICALLY INTENSIVE

STORAGETEK

BAYES theorem

$$P(A\&B) = P(A|B)P(B) = P(B|A)P(A)$$
$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

P(A|B) is probability of data given theory(parameters) P(B|A) is probability of theory(parameters) given data

MODEL COMPONENTS

MODEL COMPONENTS

- Thermalization (First fm/c)
- Viscous Hydrodynamics (First ~5-10 fm/c)

Hadron Simulation (Dissolution & Breakup)

- Numerous parameters (up to few dozen)
- ~Days of CPU to study one point in parameter space

W.Florkowski & W. Bronkowski, NPA 2003

OBSERVABLES: Spectra

feature	infer
Yields	entropy
$\langle p_t \rangle$	T and flow
$\langle p_t \rangle$ of heavy particles	more flow than T

OBSERVABLES: v2 (elliptic flow)

Sensitive to viscosity

How this was done before (v2 and n/s)

PROBLEM

v2 depends on

- viscosity
- saturation model
- pre-thermal flow
- Eq. of State
- T-dependence of η/s
- initial T_{xx}/T_{zz}

•

e.g. Drescher, Dumitru, Gombeaud and Ollitrault PRC 2007

Correct Way (MCMC)

- Simultaneously vary N model parameters xi
- Perform random walk weight by likelihood

$$\mathcal{L}(\mathbf{x}|\mathbf{y}) \sim \exp\left\{-\sum_{a} \frac{(y_a^{(\text{model})}(\mathbf{x}) - y_a^{(\text{exp})})^2}{2\sigma_a^2}\right\}$$

- ♦ Use all observables y_a
- Obtain representative sample of posterior

MCMC Metropolis algorithm

Imagine N $\rightarrow \infty$ instances (samplings) of parameters x with probability P(x) Consider two point in parameter space x_i and x_j Rates of i \rightarrow j and j \rightarrow i are

$$R(i \to j) = P(i)R(i \to j|i)$$
$$R(j \to i) = P(j)R(j \to i|j)$$

$$R(j \to i|j) = R(i \to j|i) \frac{P(i)}{P(j)}$$

If in state "i" do random step if P(j)>P(i), keep 100% if(P(i)>P(j), keep with prob. P(j)/P(i)

Difficult Because...

I. Too Many Model Runs

Requires running model ~10⁶ times

II. Many Observables

Could be hundreds of plots, each with dozens of points Complicated Error Matrices

Model Emulators

- I. Run the model ~1000 times Semi-random points (LHS sampling)
- 2. Determine Principal Components $(y = (y))/(T \Rightarrow z)$

 $(y_a - \langle y_a \rangle) / \sigma_a \rightarrow z_a$

3. Emulate z_a (Interpolate) for MCMC

Gaussian Process...

$$\mathcal{L}(\mathbf{x}|\mathbf{y}) \sim \exp\left\{-\frac{1}{2}\sum_{a} (z_a^{(\text{emulator})}(\mathbf{x}) - z_a^{(\text{exp})})^2\right\}$$

S. Habib,K.Heitman,D.Higdon,C.Nakhleh&B.Williams, PRD(2007)

Emulator

- Gaussian Process
 - Reproduces training points
 - Assumes localized Gaussian covariance
 - Must be trained, i.e. find "hyper parameters"
- Other methods also work

x (arb)

14 Parameters

- 5 for Initial Conditions at RHIC
- 5 for Initial Conditions at LHC
- 2 for Viscosity
- 2 for Eq. of State

30 Observables

- π,K,p Spectra
 ⟨pt⟩, Yields
- Interferometric Source Sizes
- v₂ Weighted by pt

Initial State Parameters

$$\epsilon(\tau = 0.8 \text{fm}/c) = f_{\text{wn}} \epsilon_{\text{wn}} + (1 - f_{\text{wn}}) \epsilon_{\text{cgc}},$$

$$\epsilon_{\text{wn}} = \epsilon_0 T_A \frac{\sigma_{\text{nn}}}{2\sigma_{\text{sat}}} \{1 - \exp(-\sigma_{\text{sat}} T_B)\} + (A \leftrightarrow B)$$

$$\epsilon_{\text{cgc}} = \epsilon_0 T_{\min} \frac{\sigma_{\text{nn}}}{\sigma_{\text{sat}}} \{1 - \exp(-\sigma_{\text{sat}} T_{\max})\}$$

$$T_{\min} \equiv \frac{T_A T_B}{T_A + T_B},$$

$$T_{\max} \equiv T_A + T_B,$$

$$u_{\perp} = \alpha \tau \frac{\partial T_{00}}{2T_{00}}$$

$$T_{zz} = \gamma P$$

5 parameters for RHIC, 5 for LHC

Equation of State and Viscosity $c_s^2(\epsilon) = c_s^2(\epsilon_h) + \left(\frac{1}{3} - c_s^2(\epsilon_h)\right) \frac{X_0 x + x^2}{X_0 x + x^2 + X'^2},$ $X_0 = X' R c_s(\epsilon) \sqrt{12},$ $x \equiv \ln \epsilon / \epsilon_h$

2 parameters for EoS, 2 for η/s

DATA Distillation

- I. Experiments reduce PBs to 100s of plots
- 2. Choose which data to analyze Does physics factorize?
- 3. Reduce plots to a few representative numbers, y_a
- 4. Transform to principal **components**, *z*^a

$$\mathcal{L} \sim \exp\left\{\frac{-1}{2}\sum_{a}(z_a - z_a^{(\exp)})^2\right\}$$

5. Resolving power of RHIC/LHC data reduced to ≤10 numbers!

Principal Component Analysis (PCA)

Many observables y_a All change as function of parameters x_i BUT, some linear combinations change — some don't

 $\delta \tilde{y}_a = \frac{(y_a - \langle y_a \rangle)}{\sigma_a} \text{ average over x}$

 $M_{ab} = \langle \delta \tilde{y}_a \delta \tilde{y}_b \rangle$

Diagaonalize M

$$M \to \begin{pmatrix} \lambda_1 & 0 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 \\ 0 & 0 & \lambda_3 & 0 \\ 0 & 0 & 0 & \lambda_4 \end{pmatrix}$$

In new basis, $y_a \leftrightarrow z_a$

z_a are known as principal components

If $\lambda_a >> 1$, good resolving power If $\lambda_a << 1$, little resolving power, no need to analyze

Review the Grand Plan

- I. Choose observables
- 2. Distill Data
- 3. Parameterize model
- 4. Run full model hundreds of times

(Latin hyper-cube sampling)

- 5. Build & Tune emulator
- 6. Perform MCMC with emulator
- 7. Analyze sensitivities

Two Calculations

J.Novak, K. Novak, S.P., C.Coleman-Smith & R.Wolpert, PRC 2014 RHIC Au+Au Data

6 parameters

Sample V2 from Prior and Posterior

What should you expect for η/s at T=165 MeV?

- ADS/CFT: 0.08
- Perturbative QCD: > 0.5 ($\sigma \approx 3 \text{ mb}$)
- Hadron Gas: \approx 0.25 ($\sigma \approx$ 30 mb)

Extracted η/s at T=165 MeV consistent with expectations for hadron gas!

Does not rise strongly in QGP

RESOLVING POWER OF OBSERVABLES

How does changing $y_{a,exp}$ or σ_a alter $\langle\langle x_i \rangle \rangle$ or $\langle\langle \delta x_i \delta x_j \rangle \rangle$? We need $\frac{\partial}{\partial y_a^{(\exp)}} \langle \langle x_i \rangle \rangle$

 $\frac{\partial}{\partial x_i} y_a^{(\mathrm{mod})}$

E.Sangaline and S.P., arXiv 2015

RESOLVING POWER OF OBSERVABLES

$$\langle \langle x_i \rangle \rangle = \frac{\langle x_i \mathcal{L} \rangle}{\langle \mathcal{L} \rangle}$$

 $\frac{\partial}{\partial y_a^{(\exp)}} \langle \langle x_i \rangle \rangle = \langle \langle x_i (\partial_a \mathcal{L}) / \mathcal{L} \rangle \rangle - \langle \langle x_i \rangle \rangle \langle \langle (\partial_a \mathcal{L}) / \mathcal{L} \rangle \rangle$

$$= \langle \langle \delta x_i (\partial_a \mathcal{L}) / \mathcal{L} \rangle \rangle$$

= $-\Sigma_{ab}^{-1} \langle \langle \delta x_i \delta y_b \rangle \rangle$ (for Gaussian)

 $\delta x_i = x_i - \langle \langle x_i \rangle \rangle, \quad \delta y_a = y_a - y_a^{(\exp)}$

can find similar relation for

$$\frac{\partial}{\partial \sigma_a} \langle \langle \delta x_i \delta x_j \rangle \rangle$$

E.Sangaline and S.P., PRC 2016

What determines viscosity?

- Both v₂ and multiplicities
- \bullet T-dependence comes from LHC v_2

What determines EoS?

- Lots of observables
- Femtoscopic radii are important

CONCLUSIONS

- Robust, emulation works splendidly
- Scales well to more parameters & more data
- Eq. of State and Viscosity can be extracted from data
- Eq. of State consistent with lattice gauge theory
- Other parameters not as well constrained
- Heavy-Ion Physics can be a Quantitative Science!!!!

FUTURE

- Improve statement of uncertainties
- Add parameters many related to hadronization region
- Consider more data
 - more observables
 - Beam energy scan (Yikes!!!!)
- Improve models
 - Lumpy initial conditions
 - 3D calculations for lower energies
 - Fill in missing physics (e.g. bulk viscosity)

THINGS TO KEEP IN MIND...

- Remember what you're trying to do
 - parameter constraint?
 - identify weakness of models?
 - predictivity?
 - not draw lines through data!
 - more parameters(physics) are better
- Data can be redundant
 - correlated uncertainties
 - underestimates of uncertainty
- Models have systematic uncertainties
 - requires objective self doubt

Additional slide: Charge BFs and charge susceptibilities

S.P., C. Ratti and W.McCormack, PRC 2016