A Study of Λ-N Scattering using the CLAS Detector at Jefferson Lab

Joey Rowley, Ken Hicks (Ohio University) John Price (Cal State Univ Dominguez Hills)

NNPSS 2019

Motivation

- Currently very little data for ΛN scattering compared to other elastic scattering processes (NN, KN or πN).
 - * < 1300 events

C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update.

Jefferson Lab

Hall B

CLAS Detector

Reaction

- Liquid Hydrogen Target
- p, p', π detected
- Ap scatter elastically

* NOT a Feynman Diagram

Procedure Analysis

$$\gamma p \rightarrow K^+ \Lambda$$

 $\longrightarrow \Lambda p \rightarrow \Lambda' p' \rightarrow p' p \pi^-$

- Data from g12
- Reconstruct the Λ ' mass: $M(\Lambda') = M(p\pi)$
- Reconstruct incident Λ
- Identify K⁺ by missing mass

Cross Section

 $\frac{d\sigma}{d\cos(\theta)}(E) = \frac{Y}{A * \mathcal{L} * b.r.* \Delta \cos(\theta)}$

Y: Yield A: Acceptance \mathcal{L} : Luminosity b.r: Branching ratio (for $p\pi^{-}$)

 $\frac{d\sigma}{d\cos(\theta)}(E)$: Energy dependent cross section

Yield

events

Yield

events

Yields

- Yield is taken from Missing Mass (K+ peak)
- Binned in Λ Momentum

Acceptance

$Acceptance = \frac{Accepted \ pp\pi^{-}}{Generated \ \Lambda p \ scattering}$

Acceptance

 $Acceptance = \frac{Accepted \ pp\pi^{-}}{Generated \ \Lambda p \ scattering}$

Accepted Events: Acceptance (E_{v} [1.2,1.6]) 120 0.05 0.045 0.04 0.035 Missing Mass [GeV/c²] ¥ 0.03 Generate Events: 0.025 ¥ 0.02 35000 0.015 30000 ¥ 25000 0.01 20000 15000 0.005 10000 1.2 0.8 1.4 1.6 1.8 0.6 5000 Missing Mass [GeV/c²] 16 Missing Mass [GeV/c²]

Luminosity

$$L_{\Lambda}(E_{\Lambda}) = \frac{\rho_T * N_A * l}{M} * \frac{N_{\Lambda}(E_{\Lambda})}{M}$$

- *ρ*_T: density of the target
- N_A: Avogadro's number
- M: molar mass of Hydrogen
- *l*: travel distance of Λ
- N_Λ(E_Λ): yield in a certain energy range

Problem: How do we find l and $N_{\Lambda}(E_{\Lambda})$?

Luminosity

Photon Beam

Decay Length ()

- 10,000 Generated Λ
- Step Size: 1 mm
- $P_{\wedge} = 1000 \text{ MeV/c}$

 $P(z) = e^{-(\frac{M}{p})(\frac{z-z_0}{c\tau})}$

- P(z): probability of A decay
- M: mass of Λ (1.115 GeV/c²)
- p: momentum of Λ
- z0: starting position
- cτ: mean proper life (7.89cm)

Z Vertex (cm)	Cos(O)	Avg. Pathlength (cm)
0.0	1.0	7.5
20	1.0	7.2
20	.707	2,6
Random	Random	2.2

 $N_{\Lambda}(E_{\Lambda})$

$$\frac{d\sigma}{d\Omega} = \frac{N_{\Lambda}}{2\pi * L_{\gamma} * \Delta \cos(\theta)}$$

Results to Come

Yields

- Acceptance
- Luminosity

Preliminary Results

- Black: Existing world data
- Blue: Measurements from this study
- Error only from statistical uncertainty

Summary and Future Work

• Many Λp events in the g12 data.

• This method opens up possibility to study other reactions with "difficult" beams.

• Various corrections still need to be made but all the mechanisms are in place.

Questions?

Extra (proton identification)

26

• pp \rightarrow pp events can also result in the same final state.

pp → pp events

Events need to be removed for incident p events but not for incident $\pi^{\text{-}}$

Extra (Sideband Subtraction)

Extra (Mandelstam Variables)

$$t = (p_1 - p_3)^2 = (p_4 - p_2)^2$$

$$\cos(\theta)_{K^{+}} = \frac{t + 2E_{\gamma}E_{K^{+}} - m_{K^{+}}^{2}}{2E_{\gamma}\sqrt{E_{K^{+}}^{2} - m_{K^{+}}^{2}}}$$

$$E_{K^+} = E_{\gamma} + m_p - E_{\Lambda}$$

$$E_{\Lambda} = -\frac{t - m_p^2 - m_{\Lambda}^2}{2m_p}$$

 $\cos(\theta)_{K^+ \, CM} \to \cos(\theta)_{\Lambda \, LAB}$

Motivation

Motivation

S. Acharya *et al.* (ALICE Collaboration), Phys Rev C, **99**, 024001 (2019).

- Correlation function relies on the cross section of Λp
- Our analysis will help improve these results