Experimental Condensed Matter Physics: Superconductivity and Magnetism

James R. (Jim) THOMPSON
University of Tennessee and Oak Ridge National Lab

This is a “hands-on,” collaborative research program directed toward a physical understanding of materials, particularly their interaction with magnetic fields. **Superconductivity** and **ferromagnetism** (also ferri- and anti-ferromagnetism) are cooperative phenomena that are strongly affected by an external magnetic field.

Research topics range from exotic features of superconductors to technological development of HTSC-based “coated conductors,” to nanomagnetism of lunar dust and bacteria by-products.

Funding: ~100 k$/year at UTK.

Seminar on UTK research programs, 7 November 2007
Present Group & collaborations

Anota IJADUOLA (Postdoc)
Valentina KUZNETSOVA (coadvise w/ Prof Barzykin)
Ozgur POLAT
John SINCLAIR (Science Alliance colleague)

COLLABORATIONS at UTK
Hanno WEITERING, Murat ÖZER, Zhenyu ZHANG, P. DAI (Physics)
Yifei ZHANG (MS&E)
Larry TAYLOR, Yang LIU (Geological Sciences)
Jan MUSFELDT, John TURNER (Chemistry)

COLLABORATIONS at ORNL
Dave CHRISTEN, M. YETHIRAJ, Ron FEENSTRA, A. GOYAL, R. JIN,…

FURTHER COLLABORATIONS
L. CIVALE and J. L. ULLMANN, LANL
V. KOGAN, R. PROZOROV, S. BUD’KO, Ames
A. SILHANEK, Katholiek Univ, Leuven, Belgium
Lia KRUSIN-ELBAUM, IBM-Yorktown
K. D. SORGE, D. LEVENTORI, Florida Atlantic Univ
T. SHIBAUCHI, Kyoto; Yu JIA, Zhengzhou Univ, PRC
Generic phase diagram for a Type II superconductor

- Magnetic flux enters as vortices with $\Phi_0 = h/2e$
- Radius of Φ_0 currents $\leftrightarrow H_c^1$
- Radius of Φ_0 core $\leftrightarrow H_c^2$
- Vortex matter in the mixed state may organize into a crystal, a glassy state, or melt into a liquid.

\[H_{c1} = \frac{\Phi_0}{4\pi \lambda^2} \ln(\kappa) \]
\[H_{c2} = \frac{\Phi_0}{2\pi \xi^2} \]

Magnetization vs field
In mixed state, microscopic currents generate vortices

Qiang Du,
http://www.math.psu.edu/
Circulating current density j creates & supports local field b. (These sketches are all for a bulk superconductor. In a thin film, b and j change algebraically over a “screening length” $\Lambda=\lambda^2/d$.)
Images of Vortex Lattice and Arrays in Superconductors

STM image of Vortex lattice, 1989

Scanning Tunnel Microscopy
NbSe$_2$, 1T, 1.8K

H. F. Hess et al.
Bell Labs
Vortex “pinning” - Create tailored ‘defects’ to match vortex geometry and number

Create strong potential wells (‘pins’) for vortices with latent tracks via ion irradiation.

- Linear geometry matches vortex geometry
- Track diameter \approx core size ξ
- Area density of tracks $B_\phi \approx$ vortex density B
- “Columnar defects”

TEM image of columnar defects in YBaCuO, created by irradiation with 1 GeV Au-ions. (R. Wheeler)
Critical current density J for YBa$_2$Cu$_3$O$_7$ with columnar defects

The energy functional for an isolated vortex in a columnar defect has the same form as a boson in a cylindrical “square well.”

Quantities map as:

- Mass m \Rightarrow vortex line tension μ
- Planck’s constant h \Rightarrow temperature T

Well depth

Zero point energy:

$E_0 = \frac{h^2}{8mL^2} \Rightarrow E_0 \sim T^2/\mu L^2$

So quantum mechanics “hurts”: increasing temperature T increases the zero point energy, causing a vortex to depin. Hence $J_c(T)$ decreases.
Quantum controlled growth of Pb films: voids trap vortices and give a high J_c; with mesas, a vortex has only to avoid them to move => low J_c

$T = 2 \text{ K}$

Science 316, 1594 (15 June 2007)
collaboration with M.M. Özer, Yu Jia, Zhenyu Zhang, JRT, and H. H. Weitering
Strong Vortex Pinning by Voids

Scale of vortex line energy per unit length:
\[\varepsilon_0 = \left(\frac{\Phi_0}{4\pi\lambda} \right)^2 \]

Vortex pinning energy:
\[U_0 = \varepsilon_0 \Delta d \]

Maximum vortex pinning force:
\[f_{pin} = -\nabla U_0 \approx \frac{\varepsilon_0 \Delta d}{\xi} \]

and balancing “Lorentz” force gives
\[f_{pin} = \xi^{-1} J_c \Phi_0 d \]

yielding estimated current density
\[J_c \approx J_{DEPAIR} \left(\frac{\Delta d}{d} \right) \approx 4 \text{ MA/cm}^2 \]

Experimentally ($T = 2$ K):
\[J_c = [2.0 \text{ (dc)} - 2.8 \text{ (ac)}] \text{ MA/cm}^2. \]
Thank you
for your attention and interest!