Skip to content

Undergraduate Research Opportunities

Undergraduate students in the physics department have the opportunity to get hands-on experience working with our faculty members. Below are some current projects open to interested students.

For additional information on internship and research opportunities for undergraduates, visit our undergraduate careers page.

The High Energy Particle Physics group of the University of Tennessee (UTK) searches for new fundamental particles and the forces with the CMS experiment at the Large Hadron Collider (LHC) of CERN in Geneva, Switzerland.

We study diamond detectors as potential application for measuring the trajectories of charged particles to potentially replace the commonly used silicon detectors as the LHC increases its beam intensity. Those types of detectors are also used for medical imaging, homeland security, nuclear reactors, fast dosimeters etc. The goal is to establish the robustness of those detectors and develop the best readout configuration such as 3D electrodes. We have a laboratory here on campus to characterize detectors using radioactive sources. We collaborate with nuclear engineering to apply other diagnostics. Interested in hands-on experience to study the charge collection properties of prototype detectors?

There is also the opportunity to get involved in testing those detectors with particle beams at Fermilab near Chicago and CERN, Geneva, Switzerland.

For more information, please contact Dr. Stefan Spanier by e-mail:, by phone: 865-974-0597, or come to my office: 502 Nielsen Physics.

The accelerator physics group at the Spallation Neutron Source project is seeking interested candidates for undergraduate research internships. The project will involve simulations of high intensity particles beams in the SNS accelerator, and beam loss and radiation deposition calculations, using existing software. This work is a critical part of a larger project focused on designing, fabricating, and installing a laser-based ion stripping system in the SNS accelerator.

The SNS is the most powerful pulsed neutron source in the world, and is driven by the only superconducting proton linac in existence. The combination of new technology and record-breaking beam intensity make the SNS an exciting place to conduct research for students at all levels.

Interested candidates should contact: Sarah Cousineau (;

  • Theoretical astrophysics, with particular emphasis on computer modeling of stellar explosions: supernova explosions, nova outbursts, X-ray bursts, gamma-ray bursts, calculation of gravitational wave signatures in such events, element production in stellar explosions (r process and rp process) ... Involves collaboration with the Oak Ridge National Laboratory.
  • Theoretical neutrino astrophysics: role of neutrinos in various areas of astrophysics and cosmology, with particular emphasis on their role in supernova explosions. Involves collaboration with the Oak Ridge National Laboratory.
  • Implementation of genetic algorithms (mathematical global minimization based on principles of evolutionary genetics) and neural networks for applications to astrophysics problems such as galaxy collisions or extrasolar planets.

Contact: Dr. Mike Guidry

Brightness enhancement of cold neutron source with diamond nanoparticles.

It was recently shown that non-expensive powder of diamond nanoparticles in layers of few centimeters can reflect slow neutrons more efficiently than high-technology neutron super-mirrors. This reflection is not specular, but can be used for enhancement of brightness of neutron sources with the spallation target. Due to this enhancement 1 MW target can shine like 10 MW target. Than can be used e.g. in the design of the neutron spallation source for the "Project-X" accelerator at Fermilab. This research project will be focused on computational Monte-Carlo simulations of the diamond nanoparticle reflectors. To be learned: basics of neutron scattering, computational Monte-Carlo methods, FORTRAN programming, statistics, data analysis and presentations of the results. Students interested in physics and computational methods are welcome to contact for interview Prof. Yuri Kamyshkov at []. Immediate involvement in the project this semester (Fall, 2012) is possible for 1,2, or 3 research class credits.

Calculation of possible interaction of Light Dark Matter particles with gas detectors.

Dark Matter is one of the biggest puzzles of the modern physics. It is known definitely that Dark Matter exists in the universe; it is even more abundant than the regular matter; however, the nature of Dark Matter is not understood. This research project will be focused on calculations that should answer the question how Dark Matter can be detected in the gaseous detectors filled with hydrogen or methane. This may allow detection of Dark Matter in the new unexplored region of masses. To be learned: physics of atomic collisions, computational Monte-Carlo methods, FORTRAN programming, statistics, data analysis and presentations of the results. Students interested in physics and computational methods are welcome to contact for interview Prof. Yuri Kamyshkov at

The activity of Dr. Mannella's group is based on the study of the electronic structure of strongly correlated electron systems such as high Tc superconductors, thermoelectric materials and giant magnetoresistive materials. Experiments are carried out at synchrotron radiation facilities due to the availability of different soft x-ray spectroscopy such as Angle Resolved Phototemission (ARPES), x-ray absorption (XAS) and x-ray emission (XES). At present, the data analysis is based on a collection of macros running under IGOR software, one of the most common data analysis software. All these macros have been independently developed by the various group that manage the the end stations at synchrotron facilities such as the ALS (Berkeley, CA), APS (Argonne, IL) and Elettra (Trieste, Italy). It is desirable to compile a user-friendly software that could handle the analysis of the data collected in different experiments in only one workbench. Available is a position for a motivated undergraduate student who will be responsible for the design and testing of such as a user-friendly interface, and for writing a new collection of macros based on the existing ones. The project constitutes an opportunity for undergraduate students to learn how different soft x-ray spectroscopic experiments are used to unveil different properties of solids. This experience would also constitute an opportunity for students to acquire a sound knowledge of the basis of data treatment, possibly turning in the near future in an RA position for a Ph.D. degree at UT to study complex electron systems with x-ray based spectroscopies. See Dr. Mannella's website for more information.

Development of state-of-the-art programming for interactive animation in the sciences. Present efforts center on object-oriented programming in languages like Java and Flash + Actionscript in the fields of astronomy, physics, biology, and genetics. These efforts underlie the development of a next generation of interactive and web-deliverable interactive textbooks in these fields for several major publishers. They also provide the basis for a variety of practical applications such as demonstration for non-specialist audiences of how drugs work in the body, the principles of DNA fingerprinting, science issues in bioterrorism, or how various high-tech medical devices function. Students will participate in the development of those interactive projects and gain extensive practical scientific and programming experience in the process. These projects can have strong overlap with areas 2, 3, and 4 listed under Topics in Computational Science, and the scientific problem depends partially on the interests of the student. Involves programming in some combination of Java, Flash Actionscript, JavaScript, XML technologies such as XML, SVG, or MathML, and database technologies such as PostGresSQL. Contact Professor Mike Guidry at

Symmetry in mathematical physics: application of algebraic symmetry principles to the understanding of problems in various fields of physics (condensed matter, particle physics, nuclear physics). Present efforts center on a new theory of high-temperature superconductivity based on Lie algebras defined in the fermion degrees of freedom, and other possible applications in condensed matter physics. Contact Professor Mike Guidry at

Calculation study of the possibility of Mirror Matter detection.

Results of some recent experiments performed with ultra-cold neutrons can be interpreted as indication of transformation of neutrons to mirror neutrons that disappears from our world. One can see for example popular discussion at Research project will be a calculation study on how to detect such a transformation to mirror matter in a less ambiguous experiment. Students interested in physics, mathematics, and FORTRAN computations are welcome to contact for interview Prof. Yuri Kamyshkov at

Calibrate the linearity of liquid scintillator by Compton scattering.

Neutrino oscillation experiment NOνA at Fermilab will employ huge volume of liquid scintillator with mass ~ 10,000 tons where neutrino energies will be measured. A small prototype of this precision detector was built at UT in order to calibrate the linearity of detector energy response with the help of Compton gamma-spectrometer, where monoenergetic gamma-rays scattered at the fixed angle will produce in the scintillator the monoenergetic electrons. Research project will include measurements of NOνA scintillator with the Compton gamma spectrometer at UT lab and the data analysis. To be learned: Compton effect, liquid scintillator detectors, WLS fibers, radioactive gamma source, germanium detector, electronics, trigger, computer data acquisition, LabVIEW, programming, data analysis and presentations of the results. Students interested in physics (not necessarily only physics majors) are welcome to contact for interview Prof. Yuri Kamyshkov at

Computational optimization of sensitivity for new NNbarX experiment for Project-X at Fermilab.

New fundamental physics experiment was recently proposed for the Project-X at Fermilab where transformation of matter to antimatter will be searched with cold neutrons from spallation target source. Sensitivity of this experiment depends on large number of different parameters that need to be chosen to optimize the sensitivity and the cost of proposed experiment. This research project will be focused on development of FORTRAN software for neutron transport and sensitivity optimization. To be learned: neutron physics, computational Monte-Carlo methods, FORTRAN programming, statistics, planning of big experiments, data analysis and presentations of the results. Students interested in physics and computational methods are welcome to contact for interview Prof. Yuri Kamyshkov at

An approximate model for a neutron gas consists of fermions with a short-range interaction and an infinite scattering length. This model captures some of the essential properties of the nucleon-nucleon interaction and is presently investigated experimentally in ultracold atom gases. We want to investigate such systems theoretically and compute their ground-state energies and densities. Undergraduate students who want to participate in this project should have an interest in theory, and a basic understanding of quantum mechanics. Contact Dr. Thomas Papenbrock.

Looking for a student who likes to get extensive experience in particle detector construction. During 2012-2013 we will build large aria veto system for the Majorana experiment. Majorana is a major USA based initiative to look for a neutrino less double beta decay. Veto system after construction and testing at UT will be relocated into Underground laboratory at the Homestake mine at South Dakota. Contact Dr. Yuri Efremenko.

Study of re-emission of Cherenkov radiation in the liquid scintillator for NOνA neutrino experiment.

Velocity of light in the liquid scintillator in smaller that velocity of light in vacuum. Thus, relativistic particles can move in the scintillator faster than in the vacuum. When it happens, the electro-magnetic shock wave arises, called Cherenkov radiation, mostly with a spectrum in ultraviolet (UV). Research project will include measurements of re-emission of UV radiation which makes it detectable in the visible spectrum of light. UV vacuum monochromator will be used to simulate the Cherenkov radiation. To be learned: optical properties of the materials, liquid scintillator detectors, WLS fibers, vacuum, electrical measurements, amplifiers, LabVIEW, programming, data analysis and presentations of the results. Students interested in physics and particularly in optics and particle detectors (not necessarily only physics majors) are welcome to contact for interview Prof. Yuri Kamyshkov at

The relativistic heavy ion group studies the properties of the Quark Gluon Plasma produced in high energy heavy ion collisions. The hot, dense medium produced in these collisions reaches temperatures over a million times hotter than the core of the sun and energy densities approximately 60 times those of normal nuclear matter. The QGP, dubbed the Perfect Liquid, has the lowest viscosity to entropy density of any fluid ever measured. Our group works on both the PHENIX experiment at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory and the ALICE experiment at the Large Hadron Collider at CERN in Geneva, Switzerland. Students working with our group will primarily do data analysis using the C++-based program ROOT. While the details of the project may be adapted depending on the interests and skills of the student and the needs of the group, we envision students studying jet production either in data or simulations. A jet is the collimated spray of particles created when a high energy parton (quark or gluon) hadronizes, or breaks down into lower mass and energy particles. By reconstructing jets the energy of the parton can be partially or wholly reconstructed. Contact Dr. Christine Nattrass.

Create a volume with zero magnetic field.

In a new fundamental physics experiment at Fermilab NNbarX where transformation of matter to antimatter will be searched for the magnetic field of Earth should be reduced by 50,000 times to below ~ 1 nano Tesla level. A small prototype of the shielding system was built at UT Physics lab to learn how different shielding methods and materials can be efficient for the magnetic field suppression. Research project will include measurements and analysis of residual magnetic field for different configurations of the shielding system with the purpose of finding the optimum shielding solution in the maximum volume. To be learned: measurement of weak magnetic fields, properties of ferromagnetics, hysteresis, demagnetization, programming, data analysis and presentation of the results. Students interested in physics (not necessarily only physics majors) are welcome to contact for interview Prof. Yuri Kamyshkov at

Anim pariatur cliche reprehenderit, enim eiusmod high life accusamus terry richardson ad squid. 3 wolf moon officia aute, non cupidatat skateboard dolor brunch. Food truck quinoa nesciunt laborum eiusmod. Brunch 3 wolf moon tempor, sunt aliqua put a bird on it squid single-origin coffee nulla assumenda shoreditch et. Nihil anim keffiyeh helvetica, craft beer labore wes anderson cred nesciunt sapiente ea proident. Ad vegan excepteur butcher vice lomo. Leggings occaecat craft beer farm-to-table, raw denim aesthetic synth nesciunt you probably haven't heard of them accusamus labore sustainable VHS.

Soft Matter Physics is a relatively new but very fast growing and exciting field of Physics. It studies phenomena in complex materials with many degrees of freedom and strong interplay between enthalpy and entropy. These materials have broad applications from energy to biomedical fields. There are four major direction of research in our group:

  • Polymer Dynamics, Glass Transition: Molecular motion is the key to many macroscopic properties of soft materials (polymers, colloids, glass-forming and biological systems, etc.). The main goal of our studies in this direction is fundamental understanding of molecular motions and their relationship to macroscopic properties of polymers and other glass-forming materials. Among the major topics, we study the glass transition phenomenon, viscoelastic and mechanical properties, electrical conductivity, influence of chemical structure of the molecules on the dynamics and macroscopic properties of the materials.
  • Dynamics of Biological Macromolecules: Activity and function of biological systems are defined by their dynamics. Understanding the basic parameters that control molecular motions in biological systems, and understanding the relationship between molecular dynamics and biological functions are the main goals of our research in this direction. Among major topics, we also study role of solvents in protein dynamics, activity and stability and we are developing formulations for long-term preservation of biological molecules.
  • Nano-composite and Nano-structured Materials: Addition of small nano-particles to polymers can tremendously affect their properties. We study the influence of nano-fillers (carbon nano-tubes, silica and polymeric particles, graphene) on mechanical and electrical properties of polymers, their dynamics and glass transition. We also study how confinement to small volume (various nanostructures) affects mechanical properties and dynamics of the materials. We analyze various kinds of nano-structures, including polymeric and biological (e.g. viruses).
  • Nano-optics, Plasmonics: We are developing scanning nano-Raman spectroscopy based on the apertureless near-field optics. It employs gigantic local enhancement of electrical field of light by plasmonic (particular metallic) structures. We already achieved Raman imaging of semiconducting structures with spatial resolution ~20 nm, far beyond the diffraction limit of light. We are also developing plasmonic structures for molecular-level sensing based on surface-enhanced Raman scattering. In our studies we use neutron and light scattering techniques, dielectric and mechanical relaxation spectroscopy, and we actively collaborate with groups performing MD-simulations. Our group is a part of Soft Materials Group at ORNL.

Talented students who are not afraid of scientific challenges are welcome to join our group, which has a Web site here:

Alexei P. Sokolov
Governor's Chair, Professor of Chemistry and Physics
663 Buehler Hall, e-mail:
The best way to contact me is via e-mail.

  • Development of parallel programming for scientific applications. Students will participate in developing code and implementing it on our parallel cluster, using Message Passing Interface (MPI) with Linux running on the nodes. Possible programming languages include F90, C, C++, and Java.The particular scientific application depends partially on the interests of the student. Depending on application, students may also be given access to larger supercomputers at Oak Ridge National Lab and other high-performance computational centers.
  • Development of a next generation of lightweight, interactive tools for scientific visualization. These tools will exploit the power of Java distributed network programming and vector graphics technologies (SWF and SVG formats). They are intended to be accessible through desktop PCs and standard networks, thus making high-quality collaborative visualization tools available even to research projects with limited budgets and computational resources. (Though our interests are serious, there is strong overlap of these issues with games programming technology. ) The particular scientific application depends partially on the interests of the student. Involves programming in Java and possibly C or C++ , and in XML (Extensible Markup Language) technologies such as scalable vector graphics (SVG).
  • Many workhorse programs in physics and astronomy have crude command-line interfaces that are cumbersome to use compared with modern graphical user interface (GUI) tools that we now expect as standard in non-scientific software. This project, which is closely related to the visualization project of the previous paragraph, develops sophisticated graphical user interfaces for such programs. Although the actual computational programs may be written in various languages (e.g., F90, C, or C++), graphical user interfaces to control them are typically written in Java or C++.
  • Application of high-end data visualization techniques for large-scale simulations of neutron-star mergers, gamma-ray bursts, gravitational wave production, and core-collapse supernovae. Involves collaboration with the Oak Ridge National Laboratory.
  • Development of new methods for solving large systems of coupled differential equations for application in astrophysics, oceanography, geochemistry, and other fields of science. Involves collaboration with the Oak Ridge National Laboratory.

Contact Dr. Mike Guidry

The flagship campus of the University of Tennessee System and partner in the Tennessee Transfer Pathway.